Skip to main content
Log in

Astrocyte-mediated methylmercury neurotoxicity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Methylmercury (MeHg) is a potent neurotoxicant. Any source of environmental mercury represents a potential risk for human MeHg poisoning, because the methylation of inorganic mercury to MeHg in waterways results ultimately in its accumulation in the sea food chain, which represents the most prevalent source for human consumption. A small amount of MeHg accumulates in the central nervous system (CNS), particularly in astrocytes. Astrocytic swelling, excitatory amino acid (EAA) release and uptake inhibition, as well as EAA transporter expression inhibition are known sequelae of MeHg exposure. Herein, we review the effect of MeHg on additional transport systems (for cystine and cysteine) as well as arachidonic acid (AA) release and cytosolic phospholipase A2 (cPLA2) regulation and attempt to integrate the effects of MeHg in astrocytes within a mechanistic hypothesis that explains the inability of these cells to maintain control of the proper milieu of the extracellular fluid and, in turn, leads to neuronal demise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kjellstrom, P. Kennedy, S. Wallis, et al., Physical and mental development of children with prenatal exposure to mercury from fish. Stage II: interviews and psychological tests at age 6. National Swedish Environmental Protection Board Report 3642, Solna, Sweden (1989).

    Google Scholar 

  2. P. Grandjean, P. Weihe, R. F. White, et al., Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury, Neurotoxicol. Teratol. 19, 417–428 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. P. W. Davidson, G. J. Myers, C. Cox, et al., Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles child development study, JAMA 280, 701–707 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. M. Aschner and H. K. Kimelberg, eds., The Role of Glia in Neurotoxicity, CRC, Boca Raton, FL (1996).

    Google Scholar 

  5. S. Murphy, ed., Astrocytes: Pharmacology and Function, Academic, New York (1995).

    Google Scholar 

  6. H. Kettenmann and B. R. Ransom, eds., Neuroglia, Oxford University Press, New York (1995).

    Google Scholar 

  7. M. Aschner, J. W. Allen, H. K. Kimelberg, R. M. LoPachin, and J. W. Streit, Glial cells in neurotoxicity development, Annu. Rev. Pharmacol. Toxicol. 39, 151–173 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. M. Aschner, N. B. Eberle, S. Goderie, and H. K. Kimelberg, Methylmercury uptake in rat primary astrocyte cultures: the role of the neutral amino acid transport system, Brain Res. 521, 221–228 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. V. Dave, K. J. Mullaney, S. Godorie, H. K. Kimelberg, and M. Aschner, Astrocytes as mediators of methylmercury neurotoxicity: effects on d-aspartate and serotonin uptake, Dev. Neurosci. 16, 222–231 (1994).

    PubMed  CAS  Google Scholar 

  10. N. Brookes, In vitro evidence for the role of glutamate in the CNS toxicity of mercury, Toxicology 76, 245–256 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. E. Matyja and J. Albrecht, Ultrastructural evidence that mercuric chloride lowers the threshold for glutamate neurotoxicity in an organotypic culture of rat cerebellum, Neurosci. Lett. 158, 155–158 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. R. H. Garman, B. Weiss, and H. L. Evans, Alkylmercurial encephalopathy in the monkey: a histopathologic and autoradiographic study, Acta Neuropathol. (Berlin) 32, 61–74 (1975).

    Article  CAS  Google Scholar 

  13. M. Aschner, D. Vitarella, J. W. Allen, D. R. Conklin, and K. S. Cowan, Methylmercury-induced inhibition of regulatory volume decrease in astrocytes: characterization of osmoregulator efflux and its reversal by amiloride, Brain Res. 811, 133–142 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. M. E. Anderson and A. Meister, Transport and direct utilization of gamma-glutamylcyst(e)ine for glutathione synthesis, Proc. Natl. Acad. Sci. USA 80, 707–711 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. S. J. Stohs and D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free Radical Biol. Med. 18, 321–336 (1995).

    Article  CAS  Google Scholar 

  16. M. Aschner, K. J. Mullaney, D. Wagoner, L. H. Lash, and H. K. Kimelberg, Intracellular glutathione (GSH) levels modulate mercuric chloride (MC)- and methylmercuric chloride (MeHgCl)-induced amino acid release from neonatal rat primary astrocytes cultures, Brain Res. 664, 133–140 (1994).

    Article  PubMed  CAS  Google Scholar 

  17. J. Sagara, K. Miura, and S. Bannai, Maintenance of neuronal glutathione by glial cells, J. Neurochem. 61, 1672–1676 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. S. F. Ali, C. P. LeBel, and S. C. Bondy, Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity, Neurotoxicology 13, 637–648 (1992).

    PubMed  CAS  Google Scholar 

  19. O. Sorg, B. Schilter, P. Honegger, and F. Monnet-Tschudi, Increased vulnerability of neurons and glial cells to low concentrations of methylmercury in a prooxidant situation, Acta Neuropathol. (Berlin) 96, 621–627 (1998).

    Article  CAS  Google Scholar 

  20. S. Bannai and N. Tateishi, Role of membrane transport in metabolism and function of glutathione in mammals, J. Membr. Biol. 89, 1–8 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. M. A. Dichter, Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology and synapse formation, Brain Res. 149, 279–293 (1978).

    Article  PubMed  CAS  Google Scholar 

  22. R. Dringen, B. Pfeiffer, and B. Hamprecht, Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione, J. Neurosci. 19, 562–569 (1999).

    PubMed  CAS  Google Scholar 

  23. K. Miura and T. W. Clarkson, Reduced methylmercury accumulation in a methylmercury-resistant rat pheochromocytoma PC12 cell line, Toxicol. Appl. Pharmacol. 118, 39–45 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. B. H. Choi, S. Yee, and M. Robles, The effects of glutathione glycoside in methylmercury poisoning, Toxicol. Appl. Pharmacol. 141, 357–364 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. K. J. Mullaney, M. N. Fehm, D. Vitarella, D. E. Wagoner, Jr., and M. Aschner, The role of -SH groups in methylmercuric chloride induced d-aspartate and rubidium release from rat primary astrocyte cultures, Brain Res. 641, 1–9 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. S. T. Park, K. T. Lim, Y. T. Chung, and S. U. Kim, Methylmercury-induced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists, Neurotoxicology 17, 37–46 (1996).

    PubMed  CAS  Google Scholar 

  27. E. O’Connor, A. Devesa, C. Garcia, I. R. Puertes, A. Pellin, and J. R. Vina, Biosynthesis and maintenance of GSH in primary astrocyte cultures: role of l-cystine and ascorbate, Brain Res. 680, 157–163 (1995).

    Article  PubMed  CAS  Google Scholar 

  28. J. Sagara, K. Miura, and S. Bannai, Cystine uptake and glutathione level in fetal brain cells in primary culture and in suspension, J. Neurochem. 61, 1667–1671 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. X. F. Wang and M. S. Cyander, Astrocytes provide cysteine in neurons by releasing glutathione, J. Neurochem. 74, 1434–1442 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. J. W. Allen, G. Shanker, and M. Aschner, Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons, Brain Res. 894, 131–140 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. G. Shanker and M. Aschner, Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: evidence for methylmercury-targeted disruption of astrocytic transport, J. Neurosci. Res. 66, 998–1002 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. T. H. Murphy, R. L. Schnaar, and J. T. Coyle, Immature cortical neurons are uniquely sensitive to glutamate sensitivity by inhibition of cystine uptake, FASEB J. 4, 1624–1633 (1990).

    PubMed  CAS  Google Scholar 

  33. Y. Sagara and D. Schubert, The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress, J. Neurosci. 18, 6662–6671 (1998).

    PubMed  CAS  Google Scholar 

  34. H. Sato, M. Tamba, T. Ishii, and S. Bannai, Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins, J. Biol. Chem. 274, 11,455–11,458 (1999).

    CAS  Google Scholar 

  35. H. Sato, M. Tamba, K. Kuriyama-Matsumura, S. Okuno, and S. Bannai, Molecular cloning and expression of human xCT, the light chain of amino acid transport system Xc-, Antioxid. Redox Signal 2, 665–671 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. A. Y. Shih and T. H. Murphy, xCT cystine transporter expression in HEK293 cells: pharmacology and localization, Biochem. Biophys. Res. Commun. 282, 1132–1137 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. M. T. Bassi, E. Gasol, M. Manzoni, et al., Identification and characterization of human xCT that co-expresses, with 4F2 heavy chain, the amino acid transport activity system xc-, Pflugers Arch. 442, 286–296 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. J. Y. Kim, Y. Kanai, A. Chairoungdua, et al., Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells, Biochim. Biophys. Acta 1512, 335–344 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. J. Flynn and G. J. McBean, Kinetic and pharmacological analysis of L-[35S]-cystine transport into rat brain synaptosomes, Neurochem. Int. 36, 513–521 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. A. S. Bender, W. Reichelt, and M. D. Norenberg, Characterization of cystine uptake in cultured astrocytes, Neurochem. Int. 37, 269–276 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. G. Shanker, J. W. Allen, L. A. Mutkus, and M. Aschner, The uptake of cysteine in cultured primary astrocytes and neurons, Brain Res. 902, 156–163 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. D. M. Bukowski, S. M. Deneke, R. A. Lawrence, and S. G. Jenkinson, A non-inducible cystine transport system in rat alveolar type II cells, Am. J. Physiol. 268, L21-L26 (1995).

    PubMed  CAS  Google Scholar 

  43. G. Shanker, J. W. Allen, L. A. Mutkus, and M. Aschner, Methyl-mercury inhibits cysteine uptake in cultured primary astrocytes, but not in neurons, Brain Res. 914, 159–165 (2001).

    Article  PubMed  CAS  Google Scholar 

  44. M. Aschner, C. P. Yao, J. W. Allen, and K. H. Tan, Methylmercury alters glutamate transport in astrocytes, Neurochem. Int. 37, 199–206 (2000).

    Article  PubMed  CAS  Google Scholar 

  45. J. S. Charleston, R. L. Body, R. P. Bolander, N. K. Mottet, M. E. Vahter, and T. M. Burbacher, Changes in the number of astrocytes and microglia in the thalamus of the monkey Macaca fascicularis following long-term subclinical methylmercury exposure, Neurotoxicology 17, 127–138 (1996).

    PubMed  CAS  Google Scholar 

  46. T. A. Sarafian, D. E. Bredesen, and M. A. Verity, Cellular resistance to methylmercury, 17, 27–36 (1996).

  47. A. Sapirstein, R. A. Spech, R. Witzgall, and J. V. Bonventre, Cytosolic phospholipase A2 (cPLA2), but not secretory PLA2, potentiates hydrogen peroxide cytotoxicity in kidney epithelial cells, J. Biol. Chem. 271, 21,505–21,513 (1996).

    CAS  Google Scholar 

  48. J. A. Clemens, D. T. Stephenson, E. B. Smalstig, et al., Reactive glia express cytosolic phospholipase A2 after transient global forebrain ischemia in the rats, Stroke 27, 527–535 (1996).

    PubMed  CAS  Google Scholar 

  49. D. Trotti, N. C. Danbolt, and A. Volterra, Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol. Sci. 19, 328–334 (1998).

    Article  PubMed  CAS  Google Scholar 

  50. G. Shanker, L. A. Mutkus, S. J. Walker, and M. Aschner, Methylmercury enhances arachidonic acid release and cytosolic phospholipase A2 expression in primary cultures of neonatal astrocytes, Mol. Brain Res. 106, 1–11 (2002).

    Article  PubMed  CAS  Google Scholar 

  51. W. J. Lukiw and N. G. Bazan, Neuro-inflammatory signaling upregulation in Alzheimer’s disease, Neurochem. Res. 25, 1173–1184 (2000).

    Article  PubMed  CAS  Google Scholar 

  52. Z. Wu, D. R. Turner, and D. B. Oliveira, IL-4 gene expression up-regulated by mercury in rat mast cells: a role of oxidant stress in IL-4 transcription, Int. Immunol. 13, 297–304 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanker, G., Syversen, T. & Aschner, M. Astrocyte-mediated methylmercury neurotoxicity. Biol Trace Elem Res 95, 1–10 (2003). https://doi.org/10.1385/BTER:95:1:1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:95:1:1

Index Entries

Navigation