Skip to main content
Log in

Effects of La3+ on growth, transformation, and gene expression of Escherichia coli

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Rare earth elements have been emitted into the environment largely as fertilizer components. This has caused much fear about whether they would influence our environment, especially on the metabolism and genetics of microorganisms. In this article, the trivalent ion of a rare earth element, lanthanum, was studied for the effects on growth, transformation, and gene expression of Escherichia coli. The results showed that La3+ at concentrations from 50 to 150 µg/mL stimulated the endogenic metabolism and ectogenic metabolism, but had few effects on gene expression. La3+ at lower concentrations from 0.5 to 30 µg/mL inhibit intensively E. coli-absorbing external DNA, decreasing the transformation efficiency. It is also supported by observations using transmission electron microscopy. Our results are significant in understanding the function of rare earth elements to microorganisms and assessing the risk of application of rare earth compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-Z. Ni, Bioinorganic Chemistry of Rare-earth Elements, Science Press, Beijing (1995).

    Google Scholar 

  2. C. H. Evans, Biochemistry of the Lanthanides, Plenum, New York (1990).

    Google Scholar 

  3. A. Peng and W.-H. Wang, eds. Environmental Bioinorganic Chemistry, Beijing University Press, Beijing (1991).

    Google Scholar 

  4. R.-M. Zhao, Y. Liu, Z.-X. Xie, et al., A microcalorimetric method for studying the biological effects of La3+ on E. coli, J. Biochem. Biophys. Methods 46, 1–9 (2000).

    Article  CAS  Google Scholar 

  5. R.-M. Zhao, Y. Liu, Z.-X. Xie, et al., Microcalorimetric study of the action of Ce(III) ions on the growth of E. coli, Biol Trace Element Res. 86, 167–175 (2002).

    Article  CAS  Google Scholar 

  6. C.-L. Xie, H.-K. Tang, Z.-H. Song, et al., Microcalorimetric study of bacterial growth, Thermochem. Acta 123, 33–41 (1988).

    Article  Google Scholar 

  7. J. Sambrook, E. F. Fritsch, T. Maniatis, et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  8. J. H. Miller, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1972).

    Google Scholar 

  9. L.-X. Zhu, N.-Q. Cheng, and X.-C. Gao, Electron Microscopy Techniques in Biology, Beijing University Press, Beijing (1983).

    Google Scholar 

  10. P. Shen, X.-R. Fan, and G.-W. Li, Laboratory Experiments in Microbiology, 3rd ed., Higher Education Press, Beijing (1999).

    Google Scholar 

  11. P. Shen, Microbiology, High Education Press, Beijing (2000).

    Google Scholar 

  12. B. Baur, K. Hanselmann, and W. Schlimme, Genetic transformation in freshwater: Escherichia coli is able to develop natural competence, Appl. Environ. Microbiol. 62, 3673–3678 (1996).

    Google Scholar 

  13. R. B. Sykes and M. Mathew, The beta-lactamases of gram-negative bacteria and their role in resistance to bata-lactam antibiotics, J. Antimicrob. Chemother. 2, 115 (1976).

    Article  PubMed  CAS  Google Scholar 

  14. M. T. Madigan, J. M. Martinko, and J. Parker, Biology of microorganisms, 8th ed., Prentice-Hall, Englewood Cliffs, NJ (1997).

    Google Scholar 

  15. K. M. Nielsen, M. Wreelet, and T. N. Berg, Natural tramsformation and availability of transforming DNA to acinetobacter calcoaceticus in soil microcosisms, Appl. Environ. Microbiol. 63, 1945–1952 (1997).

    PubMed  CAS  Google Scholar 

  16. J. Ravi, C. R. Maria, and A. L. James, Horizontal gene transfer among genomes: the conplexity hypothesis, Proc. Natl. Acad. Sci. USA 96, 3801–3806 (1999).

    Article  Google Scholar 

  17. C. R. Woese, O. Kandler, and M. L. Wheelis, Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya, Proc. Natl. Acad. Sci. USA 87, 4576–4579 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. D.L.C. Fernando and D. Julian, Horizontal gene transfer and the origin of species: lessons from bacteria, Trends Microbiol. 8, 128–132 (2000).

    Article  Google Scholar 

  19. C. A. Ana, G.-B. Gracia, R.-T. Marta, et al., Transformation of Escherichia coli with DNA from Saccharomyces cerevisiae cell lysates, Appl. Environ. Microbiol. 65, 5303–5306 (1999).

    Google Scholar 

  20. M. G. Lorenz and W. Wackernagel, Natural genetics in the enviroment, Microbiol. Rev. 58, 565–595 (1994).

    Google Scholar 

  21. M. W. Ho, T. Traavik, R. Olsvik, et al., Gene technology and gene ecology of infectious disease, Microb. Ecol. Health Dis. 10, 33–59 (1998).

    Article  Google Scholar 

  22. T. Eva, M. Max, S. Dirk, et al., Gene escape model: transfer of metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples, 56, 2471–2479 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenhua, L., Ruming, Z., Zhixiong, X. et al. Effects of La3+ on growth, transformation, and gene expression of Escherichia coli . Biol Trace Elem Res 94, 167–177 (2003). https://doi.org/10.1385/BTER:94:2:167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:94:2:167

Index Entries

Navigation