Skip to main content
Log in

Calcium, Phosphorus, calcium-phosphorus ratio in rib bone of healthy humans

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Calcium and phosphorus concentrations as well as the Ca/P ratio were estimated in intact rib bone samples from healthy humans, 37 women and 45 men, aged 15–55 yr. For Ca and P concentration measurements, instrumental neutron activation analysis was used. The mean values (mean±SD) for the investigated parameters were 19.3±4.5% of dry bone weight, 8.42±2.14% of dry bone weight, and a ratio of 2.33±0.34, respectively. Statistically significant differences for the above parameters were not observed to be related either to age or sex. The mean values for Ca, P, and the Ca/P ratio were within a very wide range of published data and close to their medians. The individual variation for the Ca/P ratio in rib bone from healthy humans was lower than those for Ca and P taken separately. An indication is that the specificity of the Ca/P ratio improves upon that for Ca and P concentrations and may be more reliable in the diagnosis of bone disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Lewinnek, J. Kelsey, A. A. White, et al., The significance and a comparative analysis of the epidemiology of hip fractures, Clin. Orthop. 152, 35–43 (1980).

    PubMed  Google Scholar 

  2. H. H. Bolotin and H. Sievanen, Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility, J. Bone Miner. Res. 16, 799–805 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. G. Fountos, E. Kounadi, M. Tzaphlidou, et al., The effect of inflammation-mediated osteoporosis (IMO) on the skeletal Ca/P ratio and on the structure of rabbit bone and skin collagen, Appl. Radiat. Isot. 49, 657–679 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. G. Fountos, E. Kounadi, M. Tzaphlidou, et al., In vivo measurement of radius calcium/phosphorus ratio by X-ray absorptiometry, Appl. Radiat. Isot. 51, 273–278 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. G. Fountos, S., Yasumura, and D. Glaros, The skeletal calcium/phosphorus ratio; a new in vivo method of determination, Med. Phys. 24, 1303–1310 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. E. D. Pellegrino and R. M. Biltz, The composition of human bone in uremia, Medicine 44, 397–418 (1965).

    Article  PubMed  CAS  Google Scholar 

  7. V. Zaichick, Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health, in Harmonization of Health-Related Environmental Measurements Using Nuclear and Isotopic Techniques, IAEA, Vienna, pp. 123–133 (1997).

    Google Scholar 

  8. V. Zaichick and S. Zaichick, INAA application for the assessment of chemical element losses under dry ashing of biological materials, in International Conference on Nuclear Analytical Methods in the Life Sciences, pp. 95–97 (1998).

  9. L. M. Mosulishvili, M. A. Kolomi’tsev, V. Yu. Dundua, et al., Multielement standards for instrumental neutron activation analysis of biological materials, J. Radioanal. Chem. 26, 175–188 (1975).

    Article  CAS  Google Scholar 

  10. R. Parr, Inter-comparison of minor and trace elements, in IAEA Animal Bone (H-5), Progress Report No. 1, IAEA, Vienna (1982).

    Google Scholar 

  11. V. M. Kalashnikov, V. Ye. Zaichick, and V. V. Proshin, Neutron activation analysis of bone minerals, Med. Radiol. 7, 82–86 (1975).

    Google Scholar 

  12. A. M. Korelo and V. Ye. Zaichick, Software to optimize the multielement INAA of medical and environmental samples, in Activation Analysis in Environment Protection, Joint Institute of Nuclear Research, Dubna, Russia pp. 326–332 (1993).

    Google Scholar 

  13. H. G. Woodard, The elementary composition of human cortical bone, Health Phys. 8, 513–517 (1962).

    Article  PubMed  CAS  Google Scholar 

  14. H. S. Vuorinen, S. Pihlman, H. Mussalo-Rauhamaa, et al., Trace and heavy metal analyses of a skeletal population representing the town people in Turku (ABO), Finland in the 16th–17th centuries: with special reference to gender, age and social background, Sci. Total Environ. 177, 145–160 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. J. D. Robertson and D. L. Samudralwar, Ion beam analysis of the bone tissue of Alzheimer’s disease patients, Nucl. Instr. Methods Phys. Res. B64, 553–557 (1992).

    Article  CAS  Google Scholar 

  16. D. L. Samudralwar and J. D. Robertson, Determination of major and trace elements in bones by simultaneous PIXE/PIGE analysis, J. Radioanal. Nucl. Chem. Articles 169, 259–267 (1993).

    Article  CAS  Google Scholar 

  17. Z. Jaworowski, F. Barbalat, C. Blain, et al., Historical changes of trace metals in human bones from France, in Metals in Bone, N. D. Priest, ed., MTP Press, Lancaster, PA, pp. 383–393 (1985).

    Google Scholar 

  18. I. H. Tipton, J. C. Johns, and M. Boyd, The variation with age of elemental concentrations in human tissue, in Proceedings First International Congress of Radiation Protection, Pergamon, Elmsford, NY, p. 759 (1968).

    Google Scholar 

  19. M. Anke, O. Latunde-Dada, W. Arnhold, et al., The influence of age, sex and cadmium exposure on the ash, calcium, phosphorus, trace element and ultra trace element content in skeleton, kidneys and liver of humans, in Advances in the Prevention of Environmental Cadmium Pollution and Countermeasures, Eiko Laboratory, Kanazawa (1999) Germany.

    Google Scholar 

  20. H. J. Schneider and M. Anke, Die Abhangigkeiten des Kalzium-, Phosphor-und Mangangehaltes verschiedener Organe des Menschen. Arch. Expr. Vet. Med. 25, 787–792 (1971).

    CAS  Google Scholar 

  21. J. Yoshinaga, T. Suzuki, and M. Morita, Sex- and age-related variation in elemental concentrations of contemporary Japanese ribs, Sci. Total Environ. 79, 209–221 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. J. Yoshinaga, T. Suzuki, M. Morita, et al., Trace elements in ribs of elderly people and elemental variation in the presence of chronic diseases, Sci. Total Environ. 162, 239–252 (1995).

    Article  PubMed  CAS  Google Scholar 

  23. T. Gassman, Chemische Untersuchungen von gesungen und rhachitishen Knochen, Hoppe-Seyler’s Z. Physiol. Chem. 70, 161–170 (1910).

    Google Scholar 

  24. I. S. Edelman, A. H. James, H. Baden, et al., Electrolyte composition of bone and the penetration of radiosodium and deuterium oxide into dog and human bone, J. Clin. Invest. 33, 122–131 (1954).

    PubMed  CAS  Google Scholar 

  25. R. M. Forbes, A. R. Cooper, and H. H. Mitchell, The composition of the adult human body as determined by chemical analysis, J. Biol. Chem. 203, 359–366 (1953).

    PubMed  CAS  Google Scholar 

  26. H. J. Koch and E. R. Smith, The determination of copper and zinc in normal and pathologic human thyroid tissue, J. Clin. Endocrinol. Metab. 16, 123–129 (1956).

    Article  PubMed  CAS  Google Scholar 

  27. J. W. Agna, H. C. Knowles, and G. Alverson, The mineral content of normal human bone, J. Clin. Invest. 37, 1357–1361 (1958).

    PubMed  CAS  Google Scholar 

  28. F. D. Moore, J. Lister, C. M. Boyden, et al., The skeleton as a feature of body composition, Hum. Biol. 40, 135–188 (1968).

    PubMed  CAS  Google Scholar 

  29. M. D. Crawford and T. Crawford, Lead content of bones in a soft and hard water area, Lancet 7597, 699–701 (1969).

    Article  Google Scholar 

  30. A. Forssen, Inorganic elements in the human body. Ann. Med. Exp. Biol. Fenniae 50, 99–162 (1972).

    CAS  Google Scholar 

  31. H. A. Schroeder, I. H. Tipton, and A. P. Nason, Trace metals in man: strontium and barium. J. Chron. Dis. 25, 491–517 (1972).

    Article  PubMed  CAS  Google Scholar 

  32. P. Bratter, D. Gawlik, J. Lausch, et al., On the distribution of the trace elements in human skeletons, J. Radioanal. Chem. 37, 393–403 (1977).

    Article  Google Scholar 

  33. O. G. Gasenko, A. A. Prohonchukov, B. B. Panikarovsky, et al., Condition of microscopic and crystal structures, microhardness, and minerals of human bone after long space flight, Kosmicheskaya Biol. Aviakosmicheskaya Med. 11, 11–20 (1977).

    Google Scholar 

  34. Y. Suzuki, The normal levels of fluorine in the bone tissue of Japanese subjects, Tohoku J. Exp. Med. 129, 327–336 (1979).

    Article  PubMed  CAS  Google Scholar 

  35. G. Tanaka, H. Kawamura, and E. Nomura, Distribution of strontium in the skeleton and in the mass of mineralized bone, Health Phys. 40, 601–614 (1981).

    Article  PubMed  CAS  Google Scholar 

  36. M. M. Erickson, A. Poklis, G. E. Gantner, et al., Tissue mineral levels in victims infant death syndrome II. Essential minerals: copper, zinc, calcium, and magnesium, Pediatr. Res. 17, 784–787 (1983).

    PubMed  CAS  Google Scholar 

  37. K. J. Quelch, R. A. Melick, P. J. Bingham, et al., Chemical composition of human bone, Arch. Oral Biol. 28, 665–674 (1983).

    Article  PubMed  CAS  Google Scholar 

  38. J. H. Kyle, Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth—the implications for palaeodietary research, J. Archaeol. Sci. 13, 403–416 (1986).

    Article  Google Scholar 

  39. A. Hisanaga, M. Hirata, A. Tanaka, et al., Variation of trace metals in ancient and contemporary Japanese bones, Biol. Trace Element Res. 22, 221–231 (1989).

    Article  CAS  Google Scholar 

  40. M. Saiki, M. K. Takata, S. Kramarski, et al., Instrumental neutron activation analysis of rib bone samples and of bone reference materials, Biol. Trace Element Res. 71–72, 41–46 (1999).

    Google Scholar 

  41. S. L. Tompsett, The lead content of human tissue and excreta, Biochem. J. 29, 1851–1853 (1935).

    PubMed  CAS  Google Scholar 

  42. S. L. Tompsett, The distribution of lead in human bones, Biochem. J. 30, 345–349 (1936).

    PubMed  CAS  Google Scholar 

  43. D. A. Henderson and J. A. Inglis, The lead content of bone in chronic Bright’s diseases, Aust. Ann. Med. 6, 145–151 (1957).

    PubMed  CAS  Google Scholar 

  44. N. Yamagata, The concentration of common cesium and rubidium in human body, J. Radiat. Res. 3, 9–30 (1962).

    PubMed  CAS  Google Scholar 

  45. R. E. Nusbaum, E. M. Butt, T. C. Gilmour, et al., Relation of air pollution to trace metals in bone, Arch. Environ. Health 10, 227–232 (1965).

    PubMed  CAS  Google Scholar 

  46. C. D. Strechlow and T. J. Kneip, The distribution of lead and zinc in the human skeleton, Am. Ind. Hyg. Assoc. J. 30, 372–378 (1969).

    Google Scholar 

  47. T., Nozaki, M. Schikawa, T. Sasuga, et al., Neutron activation analysis of uranium in human bone, drinking water and daily diet, J. Radioanal. Chem. 6, 33–40 (1970).

    Article  CAS  Google Scholar 

  48. S. B. Gross, E. A. Pfitzer, D. W. Yeager, et al., Lead in human tissues, Toxicol. Appl. Pharmacol. 32, 638–651 (1975).

    Article  PubMed  CAS  Google Scholar 

  49. L. Ulrich, The investigation of lead levels in vertebra and rib samples, Arch. Toxicol. 41, 133–148 (1978).

    Article  PubMed  CAS  Google Scholar 

  50. L. E. Wittmers, J. Wallgren, A. Alich, et al., Lead in bone IV. Distribution of lead in human skeleton, Arch. Environ. Health 43, 381–391 (1988).

    Article  PubMed  CAS  Google Scholar 

  51. B. E. Saltzman, S. B. Gross, D. W. Yeager, et al. Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ash in 55 human cadavers, Environ. Res. 52, 126–145 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzaphlidou, M., Zaichick, V. Calcium, Phosphorus, calcium-phosphorus ratio in rib bone of healthy humans. Biol Trace Elem Res 93, 63–74 (2003). https://doi.org/10.1385/BTER:93:1-3:63

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:93:1-3:63

Index Entries

Navigation