Skip to main content
Log in

Fish eating and variations in selenium and mercury levels in plasma and erythrocytes in free-living healthy Japanese men

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The levels and its interindividual and intraindividual variations of selenium (Se) and mercury (Hg) in erythrocytes and plasma were investigated in seven healthy young men during a period of 10 wk, with emphasis on the relationship to the dietary intake of several defined food items. The intraindividual variation, estimated by coefficients of variation (CVs), was 9.9% for plasma Se (PSe), 9.5% for erythrocyte Se (ESe), 42.4% for PHg, and 11.7% for EHg on the average. Significant correlations were found for mean ESe levels in each subject and his fish-eating frequency during this study (r=0.752, p<0.01). Weekly PHg levels were also correlated with average fish-eating frequency in the corresponding week of blood collection (r=0.367, p<0.05). Fish intake within 24 h before blood collection influenced PHg levels significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Gallagher, L. K. Johnson, and D. B. Milne, Short-term and long-term variability of indices related to nutritional status. I: Ca, Cu, Fe, Mg and Zn, Clin. Chem. 35, 369–373 (1989).

    PubMed  CAS  Google Scholar 

  2. N. M. Solomons, O. Pineda, and D. B. Milne, Short-term intraindividual variability in plasma trace mineral concentrations, J. Micro-nutr. Anal. 2, 55–65 (1986).

    CAS  Google Scholar 

  3. A. C. Van Steirteghem, E. A. Robertson, and D. S. Young, Variance components of serum constituents in healthy individuals, Clin. Chem. 24, 212–222 (1978).

    PubMed  Google Scholar 

  4. J. F. Pickup, E. K. Harris, M. Kearns, and S. S. Brown, Intra-individual variation of some serum constituents and its relevance to population-based reference ranges, Clin. Chem. 23, 842–850 (1977).

    PubMed  CAS  Google Scholar 

  5. P. Winkel, B. E. Statland and H. Bokelund, The effect of time of venipuncture on variation of serum constituents, Am. J. Clin. Pathol. 64, 433–447 (1975).

    PubMed  CAS  Google Scholar 

  6. E. Cotlove, E. K. Harris, and G. Z. Williams, Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. III. Physiological and medical implications, Clin. Chem. 16, 1028–1032 (1970).

    PubMed  CAS  Google Scholar 

  7. J. Sherlock, J. Hislop, D. Newton, G. Topping, and K. Whittle, Elevation of mercury in human blood from controlled chronic ingestion of methylmercury in fish, Hum. Toxicol. 3, 117–131 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. T. Suzuki, S. Himeno, T. Hongo, C. Watanabe, and H. Satoh, Mercury-selenium interaction in workers exposed to elemental mercury vapor, J. Appl. Toxicol. 6, 149–153 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. IPCS, Methylmercury, Environmental Health Criteria 101, WHO, Geneva (1990).

    Google Scholar 

  10. T. Suzuki, T. Hongo, T. Ohba, K. Kobayashi, H. Imai, H. Ishida, et al., The relation of dietary selenium to erythrocyte and plasma selenium concentrations in Japanese college women, Nutr. Res. 9, 839–848 (1989).

    Article  CAS  Google Scholar 

  11. H. Imai, T. Suzuki, H. Kashiwazaki, T. Takemoto, K. Moji, and T. Izumi, Dietary habit and selenium concentrations in erythrocyte and serum in a group of middle-aged elderly Japanese, Nutr. Res. 10, 1205–1214 (1990).

    Article  Google Scholar 

  12. T. Hongo, C. Watanabe, S. Himeno, and T. Suzuki, Relationship between erythrocyte mercury and selenium in erythrocyte, plasma and urine, Nutr. Res. 5, 1285–1289 (1985).

    Article  Google Scholar 

  13. J. H. Watkinson, Fluorometric determination of selenium in biological material with 2,3-diaminonaphthalene, Anal. Chem. 38, 92–97 (1966).

    Article  PubMed  CAS  Google Scholar 

  14. L. Magos, Selective atomic-absorption determination of inorganic mercury and methylmercury in undigested biological samples, Analyst 96, 847–853 (1971).

    Article  PubMed  CAS  Google Scholar 

  15. R. Yamamoto, H. Satoh, T. Suzuki, A. Naganuma, and N. Imura, The applicable condition of Magos’ method for mercury measurement under coexistence of selenium, Anal. Biochem. 101, 254–259 (1980).

    Article  PubMed  CAS  Google Scholar 

  16. S. Shishido and T. Suzuki, Estimation of daily intake inorganic or organic mercury via diet, Tohoku J. Exp. Med. 114, 369–377 (1974).

    Article  PubMed  CAS  Google Scholar 

  17. B. G. Svensson, A. Schutz, A. Nilsson, I. Akesson, and S. Skerfving, Fish as a source of exposure to mercury and selenium, Sci. Total Environ. 126, 61–74 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. G. Rice, J. Swartout, K. Mahaffey, and R. Schoeny, Derivation of U.S. EPA’s oral Reference Dose (RfD) for methylmercury, Drug Chem. Toxicol. 23(1), 41–54 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. J. Gailer, G. N. George, I. J. Pickering, S. Madden, R. C. Prince, E. Y. Yu, et al., Structural basis of the antagonism between inorganic mercury and selenium in mammals, Chem. Res. Toxicol. 13(11), 1135–1142 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. R. Cornelis, B. Heinzow, R. F. Herber, J. M. Christensen, O. M. Poulsen, E. Sabbioni, et al., Sample collection guidelines for trace elements in blood and urine. IUPAC Commission of Toxicology, Trace Elements Med. Biol. 10(2), 103–127 (1996).

    CAS  Google Scholar 

  21. M. P. Rayman, Dietary selenium: time to act, Br. Med. J. 314, 387–388 (1997).

    CAS  Google Scholar 

  22. A. MacPherson, M. N. I. Barclay, R. Scott, and R. W. S. Yates, Loss of Canadian wheat imports lowers selenium intake and status of the Scottish population, in P. W. F. Fischer, M. R. L’Abbe, K. A. Cockell, and R. S. Gibson, eds., Trace Elements in Man and Animals, N.R.C. Research Press, Ottawa, pp. 203–205 (1977).

    Google Scholar 

  23. M. Janghorbani, M. J. Christensen, A. Nahapetian, and V. R. Young, Selenium metabolism in healthy adults: quantitative aspects using the stable isotope SeO. Am. J. Clin. Nutr. 35, 647–654 (1982).

    PubMed  CAS  Google Scholar 

  24. J. Neve, F. Vertongen, and L. Molle, Selenium deficiency, Clin. Endocrinol. Metab. 14, 629–656 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. N. W. Griffiths, R. D. H. Stewart, and M. F. Robinson, The metabolism of Se selenomethionine in four women, Br. J Nutr. 35, 373–382 (1976).

    Article  PubMed  CAS  Google Scholar 

  26. J. Neve, F. Vertongen, and P. Caple, Selenium supplementation in healthy Belgian adults: response in platelet glutathione peroxidase activity and other blood indices, Am. J Clin. Nutr. 48, 139–143 (1988).

    PubMed  CAS  Google Scholar 

  27. T. Suzuki, H. Imai, K. Kobayashi, T. Hongo, H. Kashiwazaki, R. Ohstuka, et al., Dietary intake of selenium in Japanese—an estimation analyzed and reported values in foodstuffs and cooked dishes, J. Jpn. Soc. Nutr. Food Sci. 41, 91–102 (1988) (in Japanese).

    Google Scholar 

  28. K. Yasumoto, K. Iwami, M. Yoshida, and H. Mitsuda, Selenium content of foods and its average daily intake in Japan, J. Jpn. Soc. Nutr. Food Sci. 29, 511–515 (1976) (in Japanese).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karita, K., Suzuki, T. Fish eating and variations in selenium and mercury levels in plasma and erythrocytes in free-living healthy Japanese men. Biol Trace Elem Res 90, 71–81 (2002). https://doi.org/10.1385/BTER:90:1-3:71

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:90:1-3:71

Index Entries

Navigation