Skip to main content
Log in

Promotion of lipid oxidation by selenate and selenite and indicators of lipid peroxidation in the rat

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The AIN-93 reformulation of the AIN-76A rodent diet includes a change in selenium supplement from sodium selenite to sodium selenate to reduce dietary lipid peroxidation. A change to selenate as the standard form of Se in rat diets would render results from previous work using selenite less relevant for comparison with studies using the AIN-93 formulation. To critically examine the rationale for the AIN-93 recommendation, we prepared Torula yeast basal diets patterned as closely as possible after the AIN-93 formulation and supplemented with 0, 0.15 (adequate), or 2.0 (high) mg selenium/kg diet as sodium selenite or sodium selenate. Livers isolated from male Sprague-Dawley rats fed these diets for 15 wk showed no differences in thiobarbituric acid-reactive substances or lipid hydroperoxides measured with the ferrous oxidation in xylenol orange method. Lipids isolated from samples of high-selenate and high-selenite diets showed no differences in conjugated dienes. The addition of selenate or selenite to soybean oil did not result in an altered Oil Stability Index. These results demonstrate that selenate is not less likely than selenite to cause oxidation of other dietary components. Benefits of selenate over selenite in the diets of rodents remain to be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Reeves, F. H. Nielsen, and G. C. Fahey, Jr., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet, J. Nutr. 123, 1939–1951 (1993).

    PubMed  CAS  Google Scholar 

  2. C. D. Eckhert, M. K. Lockwood, and B. Shen, Influence of selenium on the microvasculature of the retina, Microvasc. Res. 45, 74–82 (1992).

    Article  Google Scholar 

  3. S. C. Vendeland, J. A. Butler, and P. D. Whanger, Intestinal absorption of selenite, selenate, and selenomethionine in the rat, J. Nutr. Biochem. 3, 359–365 (1992).

    Article  CAS  Google Scholar 

  4. National Research Council, Selenium in Nutrition, rev. ed., National Academy Press, Washington, DC (1983).

    Google Scholar 

  5. J. Brtko and P. Filipcik, Effect of selenite and selenate on rat liver nuclear 3,5,3′-triiodothyronine (T3) receptor, Biol. Trace Element Res. 41, 191–199 (1994).

    CAS  Google Scholar 

  6. J. Brtko, P. Filipcik, S. Hudecova, A. Brtkova, and J. Bransova, Nuclear all-trans retinoic acid receptors: in vitro effects of selenium, Biol. Trace Element Res. 62, 43–50 (1998).

    CAS  Google Scholar 

  7. B. P. Sani, J. L. Woodard, M. C. Pierson, and R. D. Allen, Specific binding proteins for selenium in rat tissues, Carcinogenesis 9, 277–284 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. Z. J. Wang, J. Zhou, and A. Peng, Metabolic differences and similarities of selenium in blood and brain of the rat following the administration of different selenium compounds, Biol. Trace Element Res. 33, 135–143 (1992).

    CAS  Google Scholar 

  9. National Research Council, Guide for the Care and Use of Laboratory Animals, National Academy Press, Washington, DC (1996).

    Google Scholar 

  10. National Research Council, Nutrient Requirements of Laboratory Animals, National Academy Press, Washington, DC (1995).

    Google Scholar 

  11. American Oil Chemists’ Society, Official Methods and Recommended Practices of the AOCS; Cd 12b-92, 5th ed., American Oil Chemists’ Society, Champaign, IL (1998).

    Google Scholar 

  12. M. Uchiyama and M. Mihara, Determination of malonaldehyde precursor in tissues by thiobarbituric acid test, Anal. Biochem. 86, 271–278 (1978).

    Article  PubMed  CAS  Google Scholar 

  13. W. G. Willmore and K. B. Storey, Antioxidant systems and anoxia tolerance in a freshwater turtle Trachemys scripta elegans, Mol. Cell. Biochem. 170, 177–185 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. Z. Y. Jiang, A. C. Woollard, and S. P. Wolff, Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method, Lipids 26, 853–856 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. M. Hermes Lima, W. G. Willmore, and K. B. Storey, Quantification of lipid peroxidation in tissue extracts based on Fe(III) xylenol orange complex formation, Free Radical Biol. Med. 19, 271–280 (1995).

    Article  CAS  Google Scholar 

  16. M. J. Christensen, P. M. Cammack, and C. D. Wray, Tissue specificity of selenoprotein gene expression in rats, J. Nutr. Biochem. 6, 367–372 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. R. A. Lawrence and R. F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver, Biochem. Biophys. Res. Commun. 71, 952–958 (1976).

    Article  PubMed  CAS  Google Scholar 

  18. M. J. Christensen, B. L. Nelson, and C. D. Wray, Regulation of glutathione S-transferase gene expression and activity by dietary selenium, Biochem. Biophys. Res. Commun. 202, 271–277 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. W. H. Habig, M. J. Pabst, and W. B. Jakoby, Glutathione S-transferases. The first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249, 7130–7139 (1974).

    PubMed  CAS  Google Scholar 

  20. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  21. Report of the American Institute of Nutrition ad hoc Committee on Standards for Nutritional Studies, J. Nutr. 107, 1340–1348 (1977).

    Google Scholar 

  22. R. F. Burk and J. M. Lane, Ethane production and liver necrosis in rats after administration of drugs and other chemicals, Toxicol. Appl. Pharmacol. 50, 467–478 (1979).

    Article  PubMed  CAS  Google Scholar 

  23. A. S. Csallany, L. C. Su, and B. Z. Menken, Effect of selenite, vitamin E and N,N′-diphenyl-p-phenylenediamine on liver organic solvent-soluble lipofuscin pigments in mice, J. Nutr. 114, 1582–1587 (1984).

    PubMed  CAS  Google Scholar 

  24. J. J. Dougherty and W. G. Hoekstra, Stimulation of lipid peroxidation in vivo by injected selenite and lack of stimulation by selenate, Proc. Soc. Exp. Biol. Med. 169, 209–215 (1982).

    PubMed  CAS  Google Scholar 

  25. D. Bonnes Taourel, M. C. Guerin, and J. Torreilles, Is malonaldehyde a valuable indicator of lipid peroxidation? Biochem. Pharmacol. 44, 985–988 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. D. R. Janero, Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury, Free Radical Biol. Med. 9, 515–540 (1990).

    Article  CAS  Google Scholar 

  27. D. Lapenna and F. Cuccurullo, TBA test and “free” MDA assay in evaluation of lipid peroxidation and oxidative stress in tissue systems [letter; comment], Am. J. Physiol. 265, H1030-H1032 (1993).

    PubMed  CAS  Google Scholar 

  28. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, 3rd ed., Oxford University Press, New York (1999).

    Google Scholar 

  29. R. F. Burk, Production of selenium deficiency in the rat, Methods Enzymol. 143, 307–313 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. M. J. Christensen, Selenium diets: deficiency and excess, in Trace Elements in Laboratory Rodents, R. R. Watson, ed., CRC, Boca Raton, FL, pp. 123–132 (1996).

    Google Scholar 

  31. Y. Sun, P-C. Ha, J. A. Butler, B-R. Ou, J-Y. Yeh, and P. Whanger, Effect of dietary selenium on selenoprotein W and glutathione peroxidase in 28 tissues of the rat, J. Nutr. Biochem. 9, 23–27 (1998).

    Article  CAS  Google Scholar 

  32. J-Y. Yeh, S. C. Vendeland, Q. Gu, J. A. Butler, B-R. Ou, and P. D. Whanger, Dietary selenium increases selenoprotein W levels in rat tissues, J. Nutr. 127, 2165–2172 (1997).

    PubMed  CAS  Google Scholar 

  33. X. G. Lei, J. K. Evenson, K. M. Thompson, and R. A. Sunde, Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium, J. Nutr. 125, 1438–1446 (1995).

    PubMed  CAS  Google Scholar 

  34. M. Kotrebai, M. Birringer, J. F. Tyson, E. Block, and P. C. Uden, Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents, Analyst 125, 71–78 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. O. A. Levander and R. F. Burk, Seleniuim, in Present Knowledge in Nutrition, 7th ed., E. E. Ziegler and L. J. Filer, Jr. eds., International Life Sciences Institute, Washington, DC, pp. 321 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Results included in this paper were presented at the meeting of Experimental Biology 98, San Francisco, CA, April 18–22, 1998, and published in abstract form (Moak, M. A., Johnson, B. L., & Christensen, M. J. [1998] On the AIN-93G recommendation for selenium. FASEB J. 12, A824).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moak, M.A., Christensen, M.J. Promotion of lipid oxidation by selenate and selenite and indicators of lipid peroxidation in the rat. Biol Trace Elem Res 79, 257–269 (2001). https://doi.org/10.1385/BTER:79:3:257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:79:3:257

Index Entries

Navigation