Skip to main content
Log in

A mild magnesium deprivation affects calcium excretion but not bone strength and shape, including changes induced by nickel deprivation, in the rat

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

An experiment was performed to determine the effect of a mild magnesium deprivation on calcium metabolism and bone composition, shape, and strength in rats, and whether nickel deprivation exacerbated or alleviated any changes caused by the magnesium deprivation. Weanling male rats were assigned to groups of 10 in a factorial arrangement, with variables being supplemental nickel at 0 and 1 mg/kg and magnesium at 250 and 500 mg/kg of diet. The basal diet contained about 30 ng Ni/g. Urine was collected for 24 h during wk 8 and 12, and rats were euthanized 13 wk after dietary treatments began. Mild magnesium deprivation decreased the urinary excretion of calcium and increased the tibia concentration of calcium but did not affect femur shape or strength (measured by a three-point bending test). Dietary nickel did not alter these effects of magnesium deficiency. Nickel deprivation increased the urinary excretion of phosphorus and the femur strength variables maximum force and moment of inertia. Strength differences might have been the result of changes in bone shape. Magnesium deprivation did not alter the effects of nickel deprivation on bone. The findings indicate that a mild magnesium deficiency affects calcium metabolism but that this does not markedly affect bone strength or shape, and these effects are not modified by dietary nickel. Also, nickel deprivation affects phosphorus metabolism and bone strength and shape; these effects apparently are not caused by changes in magnesium metabolism or utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Rude, M. E. Kirchen, H. E. Gruber, A. A. Stasky, and M. H. Meyer, Magnesium deficiency induces bone loss in the rat, Miner. Electrolyte Metab. 24, 314–320 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. R. P. Heaney, Nutrition and risk of osteoporosis, in Osteoporosis, Vol. 1, R. Marcus, D. Feldman, and J Kelsey, eds., Academic, San Diego, pp. 669–700 (2001).

    Google Scholar 

  3. Food and Nutrition Board, Institute of Medicine, Magnesium, in Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride, National Academy Press, Washington DC, pp. 190–249 (1997).

    Google Scholar 

  4. S. Wallach, Effects of magnesium on skeletal metabolism, Magnesium Trace Elements 9, 1–14 (1990).

    CAS  Google Scholar 

  5. R. K. Rude, Magnesium deficiency: a possible risk factor for osteoporosis, in Nutritional Aspects of Osteoporosis, P. Burckhardt, B. Dawson-Hughes, and R. P. Heany, eds., Academic, San Diego, pp. 263–271 (2001).

    Google Scholar 

  6. R. K. Rude, H. E. Gruber, L. Y. Wei, A. Frausto, and B. G. Mills, Magnesium deficiency: effect on bone and mineral metabolism in the mouse, Calcif. Tissue Int. 72, 32–41 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. C. R. Reddy, J. W. Coburn, D. L., Hartenbower, et al., Studies on mechanisms of hypocalcemia of magnesium depletion, J. Clin. Invest. 52, 3000–3010 (1973).

    PubMed  CAS  Google Scholar 

  8. J. Welsh, R. Schwartz, and L. Krook, Bone pathology and parathyroid gland activity in hypocalcemic magnesium-deficient chicks, J. Nutr. 111, 514–524 (1981).

    PubMed  CAS  Google Scholar 

  9. S. Fatemi, E. Ryzen, J. Flores, D. B. Endres, and R. K. Rude, Effect of experimental human magnesium depletion on parathyroid hormone secretion and 1,25-dihydroxyvitamin D metabolism, J. Clin. Endocrinol. Metab. 73, 1067–1072 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. J.-L. Riond, P. Hartmann, P. Steiner et al., Long-term excessive magnesium supplementation is deterious whereas suboptimal supply is beneficial for bones in rats, Magnesium Res. 13, 249–264 (2000).

    CAS  Google Scholar 

  11. E. Planells, P. Aranda, F. Peran, and J. Llopis, Changes in calcium and phosphorus absorption and retention during long-term magnesium deficiency in rats, Nutr. Res. 13, 691–699 (1993).

    Article  CAS  Google Scholar 

  12. S. T. McElroy, J. E. Link, R. P. Dowdy, K. R. Zinn, and M. R. Ellersieck, Influence of age and magnesium on calcium metabolism in rats, J. Nutr. 121, 492–497, (1991).

    PubMed  CAS  Google Scholar 

  13. M. E. Shils, Experimental production of magnesium deficiency in man, Ann. NY Acad. Sci. 162, 847–855 (1969).

    Article  PubMed  CAS  Google Scholar 

  14. F. H. Nielsen, The alteration of magnesium, calcium and phosphorus metabolism by dietary magnesium deprivation in postmenopausal women is not affected by dietary boron deprivation, Magnesium Res. 17, 197–210 (2004).

    CAS  Google Scholar 

  15. F. H. Nielsen and H. E. Sauberlich, Evidence of a possible requirement for nickel by the chick, Proc. Soc. Exp. Biol. Med. 134, 845–849 (1970).

    PubMed  CAS  Google Scholar 

  16. M. Anke, N. Groppel, H. Kronemann, and M. Grün, Nickel: an essential element, in Nickel in the Human Environment, F. W. Sunderman, Jr., et al., eds., International Agency for Research on Cancer, Lyon, pp. 339–365 (1984).

    Google Scholar 

  17. M. Kirchgessner, J. Perth, and A. Schnegg, Mangelnde Ni-Versorgung und Ca−, Mg−, und P-Gehalte im Knochen wachsender Ratten, Arch. Tierernährung 30, 805–810 (1980).

    CAS  Google Scholar 

  18. F. H. Nielsen, T. J. Zimmerman, and T. R. Shuler, Interactions among nickel, copper, and iron in rats: growth, blood parameters, and organ wt/body wt ratios, Biol. Trace Element Res. 4, 125–143 (1982).

    CAS  Google Scholar 

  19. T. D. Crenshaw, E. R. Peo, Jr., A. J. Lewis, and B. D. Moser, Bone strength as a trait for assessing mineralization in swine: a critical review of techniques involved, J. Anim. Sci. 53, 827–835 (1981).

    Google Scholar 

  20. G. I. Stangl and M. Kirchgessner, Comparative effects of nickel and iron depletion on circulating thyroid hormone concentrations in rats, J. Anim. Physiol. Anim. Nutr. 79, 18–26 (1998).

    Article  CAS  Google Scholar 

  21. F. H. Nielsen, Effect of form of iron on nickel deprivation in the rat: plasma and liver lipids, Biol. Trace Element Res. 2, 199–210 (1980).

    CAS  Google Scholar 

  22. G. I. Stangl and M. Kirchgessner, Nickel deficiency alters liver lipid metabolism in rats, J. Nutr. 126, 2466–2473 (1996).

    PubMed  CAS  Google Scholar 

  23. M. Kirchgessner and A. Schnegg, Biochemical and physiological effects of nickel deficiency, in Nickel in the Environment, J. O. Nriagu, ed., Wiley, New York, pp. 635–652 (1980).

    Google Scholar 

  24. F. H. Nielsen, E. O. Uthus, R. A. Poellot, and T. R. Shuler, Dietary vitamin B12, sulfur amino acids, and odd-chain fatty acids the response of rats to nickel deprivation, Biol. Trace Element Res. 37, 1–15 (1993).

    CAS  Google Scholar 

  25. F. H. Nielsen, E. A. Poellot, and E. O. Uthus, Managenese deprivation affects response to nickel deprivation, J. Trace Elements Exp. Med. 7, 167–185 (1995).

    CAS  Google Scholar 

  26. F. H. Nielsen, T. R. Shuler, T. G. McLeod, and T. J. Zimmerman, Nickel influences iron metabolism through physiologic, pharmacologic and toxicologic mechanisms in the rat, J. Nutr. 114, 1280–1288 (1984).

    PubMed  CAS  Google Scholar 

  27. S. W. Golf, U. Schaefer, V. Graef, H. Temme, N. Katz, and L. Róka, Deficiency of magnesium and overiectomy. Effects on biochemical parameters in cells, plasma and urine of the rat, in Magnesium: A Relevant Ion, B. Lasserre and J. Durlach, eds., John Libbey, London, pp. 343–352 (1991).

    Google Scholar 

  28. I. Mak, B. F. Dickens, A. M. Komarov, T. L. Wagner, T. M. Phillips, and M. B. Weglicki, Activation of neutrophil and loss of plasma glutathione during Mg-deficiency: modulation by nitric oxide synthase inhibition, Mol. Cell. Biochem. 176, 35–39 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. A. E. Bergstra, A. G. Lemmens, and A. C. Beynen, Dietary fructose vs. glucose stimulates nephrocalcinogenesis in female rats, J. Nutr. 123, 1320–1327 (1993).

    PubMed  CAS  Google Scholar 

  30. F. H. Nielsen, D. R. Myron, S. H. Givand, and D. A. Ollerich, Nickel deficiency and nickel-rhodium interaction in chicks, J. Nutr. 105, 1607–1619 (1975).

    PubMed  CAS  Google Scholar 

  31. K. Yokoi, E. O. Uthus, and F. H. Nielsen, Nickel deficiency diminishes sperm quantity and movement in rats. Biol. Trance Element Res. 93, 141–153 (2003).

    Article  CAS  Google Scholar 

  32. J. W. Spears, E. E. Hatfield, and R. M. Forbes, Nickel-copper interrelationship in the rat, Proc. Soc. Exp. Biol. Med. 156, 140–143 (1977).

    PubMed  CAS  Google Scholar 

  33. J. W. Spear and E. E. Hatfield, Interaction between nickel and copper in the rat, Biol. Trace Element Res. 7, 181–193 (1985).

    Article  Google Scholar 

  34. A. Schnegg and M. Kirchgessner, Zur Interaktion von Nickel mit Eisem, Kupfer und Zink, Arch. Tierernährung 26, 543–549 (1976).

    CAS  Google Scholar 

  35. A. Jiménez, E. Planells, P. Aranda, M. Sánchez-Viñas, and J. Llopis, Changes in bioavailability and tissue distribution of copper caused by magnesium deficiency in rats, J. Agric. Food Chem. 45, 4023–4027 (1997).

    Article  Google Scholar 

  36. G. I. Stangl and M. Kirchgessner, Effect of nickel deficiency on fatty acid composition of total lipids and individual phospholipids in brain and erythrocytes of rats, Nutr. Res. 17, 137–147 (1997).

    Article  CAS  Google Scholar 

  37. S. Reinwald, Y. Li, T. Moriguchi, N. Salem, Jr., and B. A. Watkins, Repletion with (n−3) fatty acids reverses bone structural deficits in (n−3)-deficient rats, J. Nutr. 134, 388–394 (2004).

    PubMed  CAS  Google Scholar 

  38. W. B. Bowler, A. Littlewood-Evans, G. Bilbe, J. A. Gallagher, and C. J. Dixon, P2Y2 receptors are expressed by human osteoclasts of giant cell tumor but do not mediate ATP-induced bone resorption, Bone, 22, 195–200 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination.

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of the products that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, F.H. A mild magnesium deprivation affects calcium excretion but not bone strength and shape, including changes induced by nickel deprivation, in the rat. Biol Trace Elem Res 110, 133–149 (2006). https://doi.org/10.1385/BTER:110:2:133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:110:2:133

Index Entries

Navigation