Skip to main content
Log in

Zinc sulfate in the prevention of total-body irradiation-induced early hematopoietic toxicity

A controlled study in a rat model

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Exposure to ionizing total-body radiation suppresses hematopoiesis, resulting in decreased production of blood cells. Many researchers have demonstrated the critical role of zinc (Zn) in diverse physiological processes, such as growth and development, maintenance and priming of the immune system, and tissue repair. The aim of the present study was to determine the effects of zinc sulfate (40 mg/kg and 80 mg/kg) on early hematopoietic toxicity, caused by total-body irradiation (TBI) of rats with a single dose of 8 Gy. Both in the Zn 40 and in the Zn 80 groups, there were significantly increased white blood cell (WBC) count, when compared with control group. The WBC count was higher in the control group than in the TBI group. This result was statistically significant (p<0.05). Both the TBI+Zn 40 and the TBI+Zn 80 groups had a significantly protected WBC count against TBI. No difference was detected in any final measurement of thrombocyte count and hemoglobin level with direct comparison among all groups, with the exception that the hemoglobin level in the Zn 80 group compared to the control group. Whereas hemoglobin level in the control group was at a median figure of 13.98 g/dL (13.30–14.80), it was at a median figure of 14.25 g/dL (14.10–15.50) in the Zn 80 group. It would be worth while studying the effect of oral zinc sulfate supplements in radiation-treated cancer patients, in the hope of reducing radiation-induced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. V. Ertekin, H. Uslu, I. Karslioglu, et al., Effect of oral zinc sulphate supplementation on agents of oropharyngeal infection in patients receiving radiotherapy for head and neck cancer, J. Int. Med. Res. 31, 251–266 (2003).

    Google Scholar 

  2. D. Porock, Factors influencing the severity of radiation skin and oral mucosal reactions: development of a conceptual framework, Eur. J. Cancer Care 11, 33–43 (2002).

    Article  Google Scholar 

  3. K. E. Sabitha and C. S. Shyamaladevi, Oxidant and antioxidant activity changes in patients with oral cancer and treated with radiotherapy, Oral Oncol. 35, 273–277 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. D. Kilic, H. Sayan, B. Gonul, et al., The effect of granulocyte macrophage-colony stimulating factor on glutathione and lipid peroxidation in a rat model, Eur. J. Surg. Oncol. 26, 701–704 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. N. Y. Haboubi, O. El-Zammer, S. T., O'Dwyer, et al., Radiation bowel disease: pathogenesis and management, Colorectal Dis. 2, 322–329 (2000).

    Article  Google Scholar 

  6. N. O. Mackova and P. Pedorocko, Effect of liposomal muramyl tripeptide phosphatidyl-ethanolamine and indomethacin on hematopoietic recovery in irradiated mice, Physiol. Res. 51, 511–521 (2002).

    PubMed  CAS  Google Scholar 

  7. M. A. Mouthon, A. Van Der Meeren, M. H. Gaugler, et al., Thrombopoietin promotes hemetopoietic recovery and survival after high dose whole body irradiation, Int. J. Radiat. Oncol. Biol. Phys. 43, 867–875 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. R. Neal, R. H. Matthews, P. Lutz, et al., Antioxidant role ofn-acetyl cysteine isomers following high dose irradiation, Free Radical Biol. Med. 34, 689–695 (2003).

    Article  CAS  Google Scholar 

  9. S. H. Kim, S. E. Lee, H. Oh, et al., The radioprotective effects of Bu-Zhong-Yi-Qi-Tang: a prescription of traditional Chinese medicine, Am. J. Chin. Med. 30, 127–137 (2002).

    Article  PubMed  Google Scholar 

  10. Vijayalaxmi, M. L. Meltz, R. J. Reiter, et al., Melatonin and protection from genetic damage in blood and bone marrow: whole-body irradiation studies in mice, J. Pineal Res. 27, 221–225 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. G. L. Floersheim, N. Chiodetti, and A. Bieri, Differential radioprotection of bone marrow and tumour cells by zinc aspartate, Br. J. Radiol. 61, 501–508 (1988).

    PubMed  CAS  Google Scholar 

  12. F. Momm, C. Bechtold, V. Rudat, et al., Alteration of radiation-induced hematotoxicity by amifostine, Int. J. Radiat. Oncol. Biol. Phys. 51, 947–951 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. H. Y. Hsu, Y. H. Ho, and C. C. Lin, Protection of mouse bone marrow by Si-Wu-Tang against whole body irradiation, J. Ethanopharmacol. 52, 113–117 (1996).

    Article  CAS  Google Scholar 

  14. W. Nothdurft, L. Kreja, and C. Selig, Acceleration of hemopoietic recovery in dogs after extended-field partial-body irradiation by treatment with colony-stimulating factors: rhG-CSF and rhGM-CSF, Int. J. Radiat. Oncol. Biol. Phys. 37, 1145–1154 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. A. Q. Truong-Tran, J. Carter, R. Ruffin, R., et al., New insights into the role of zinc in the respiratory epithelium, Immunol. Cell. Biol. 79, 170–177 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. E. Mocchegiani, M. Muzzioli, and R. Giacconi, Zinc metallothioneins, immune responses, survival and ageing, Biogerontology 1, 133–143 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. A. S. Prasad and O. Kucuk, Zinc in cancer prevention, Cancer Metast. Rev. 21, 291–295 (2002).

    Article  CAS  Google Scholar 

  18. B. N. Ames, Micronutrients prevent cancer and delay aging, Toxicol. Lett. 102(3), 5–18 (1998).

    Article  PubMed  Google Scholar 

  19. E. Mocchegiani, R. Giacconi, M. Muzzioli, et al., Zinc, infections and immunose-nescense, Mech. Ageing Dev. 12, 21–35 (2000).

    Google Scholar 

  20. D. Bagchi, M. Bagchi, and S. J. Stohs, Comparative in vitro oxygen radical scavenging ability of zinc methionine and selected zinc salts and antioxidants, Gen. Pharmacol. 28, 85–91 (1997).

    PubMed  CAS  Google Scholar 

  21. T. M. Bray and W. J. Bettger, The physiological role of zinc as an antioxidant, Free Radical Biol. Med. 8, 281–291 (1990).

    Article  CAS  Google Scholar 

  22. E. F. Rostan, H. V. DeBuys, D. L. Madey, et al., Evidence supporting zinc as an important antioxidant for skin, Int. J. Dermatol. 41, 606–611 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. M. Ebadi, M. P. Leuschen, H. el Refaey, et al., The antioxidant properties of zinc and metallothionein, Neurochem. Int. 29, 159–166 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. M. P. Zago and P. I. Oteiza, The antioxidant properties of zinc: interactions with iron and antioxidants, Free Radical Biol. Med. 31, 266–274 (2001).

    Article  CAS  Google Scholar 

  25. M. Guven, B. Ozturk, A. Sayal, et al., Lipid peroxidation and antioxidant system in the blood of patients with Hodgkin's disease, Clin. Biochem. 33, 209–212 (2002).

    Article  Google Scholar 

  26. E. Jourdan, N. Emonet-Piccardi, C. Didier, et al., Effects of cadmium and zinc on solar-simulated light-irradiated cells: potential role of zinc-metallothionein in zinc-induced genoprotection, Arch. Biochem. Biophys. 405, 170–177 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. R. S. MacDonald, The role of zinc in growth a cell proliferation, J. Nutr. 130(5S, Suppl), 1500–1508 (2000).

    Google Scholar 

  28. S. R. Gogu and K. C. Agrawal, The protective effect of zinc and N-Acetylcysteine in modulating Zidovudine induced hematopoietic toxicity, Life Sci. 59, 1323–1329 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. L. Rink and P. Gabriel, Extracellular and immunological actions of zinc, Biometals 14, 367–383 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. A. S. Prasad, Zinc and immunity, Mol. Cell. Biochem. 188, 63–69 (1998).

    Article  PubMed  CAS  Google Scholar 

  31. R. E. Black and S. Sazawal, Zinc and chilhood infections disease morbidity and mortality, Br. J. Nutr. 85(Suppl. 2), 125–129 (2001).

    Article  Google Scholar 

  32. E. Mocchegiani, S. Veccia, F. Ancarani, et al., Benefit of oral zinc supplementation as an adjunct to zidovudine (AZT) therapy against opportunistic infections in AIDS, Int. J. Immunopharmacol. 17, 719–727 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. F. T. Al-Gurairi, M. Al-Waiz, and K. E. Sharquie, Oral zinc sulphate in the treatment of recalcitrant viral warts: randomized placebo-controlled clinical trial, Br. J. Dermatol. 146, 423–431 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. K. E. Sharquie, R. A. Najim, I. B. Farjou, et al., Oral zinc sulphate in the treatment of acute cutaneous leishmaniasis, Clin. Exp. Dermatol. 26, 21–26 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. A. H. Baqui, R. E. Black, S. El Arifeen, et al., Effect of zinc supplementation started during diarrhoea on morbidity and mortality in Bangladeshi children: community randomised trial, Br. Med. J. 325, 1059–1066 (2002).

    Article  CAS  Google Scholar 

  36. Z. A. Bhutta, S. M. Bird, R. E. Black, et al., Therapeutic effects of oral zinc in acute and persistent diarrhea in children in developing countries: pooled analysis of randomized controlled trials, Am. J. Clin. Nutr. 72, 1516–1522 (2000).

    PubMed  CAS  Google Scholar 

  37. C. Ripamonti, E. Zecca, C. Brunelli, et al., A randomized, controlled clinical trial to evaluate the effects of zinc sulfate on cancer patients with taste alterations caused by head and neck irradiation, Cancer 82, 1938–1945 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. A. Federico, P. Iodice, P. Federico, et al., Effects of selenium and zinc supplementation on nutritional status in patients with cancer of digestive tract, Eur. J. Clin. Nutr. 55, 293–297 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. F. Girodon, P. Galan, A. L. Monget, et al., Impact of trace elements and vitamin supplementation on immunity and infections in institutionalised elderly patients: a randomized controlled trial. MIN. VIT. AOX. geriatric network, Arch. Intern. Med. 159, 748–754 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. A. H. Shankar and A. S. Prasad, Zinc and immune function: the biological basis of altered resistance to infection, Am. J. Clin. Nutr. 68(Suppl.), 447–463 (1998).

    Google Scholar 

  41. N. Donmez, H. H. Donmez, E. Keskin, et al., Effects of zinc supplementation to ration on some hematological parameters in broiler chicks, Biol. Trace Element Res. 87, 125–131 (2002).

    Article  CAS  Google Scholar 

  42. B. H. Bay, G. Singh, and K. H. Sit, Effect of intraperitoneal zinc on the hematological profiles of C57/6J mice, Singapore Med. J. 36, 271–272 (1995).

    PubMed  CAS  Google Scholar 

  43. H. Ding, R. Peng, R. Kong, et al., Effects of high dietary zinc on mice (II)—Influence on growth, blood composition and immune function, Wei Sheng Yan Jiu 26, 325–326 (1997).

    PubMed  CAS  Google Scholar 

  44. V. Rupic, L. Ivandija, S. Luterotti, et al., Plasma proteins and hematological parameters in fattening pigs fed different sources of dietary zinc, Acta Vet. Hung. 46, 111–126 (1998).

    PubMed  CAS  Google Scholar 

  45. R. P. Gupta, P. C. Verma, and R. K. Gupta, Experimental zinc deficiency in guinea-pigs: clinical signs and some haematological studies, Br. J. Nutr. 54, 421–428 (1985).

    Article  PubMed  CAS  Google Scholar 

  46. J. Matsubara, T. Shida, K. Ishioka, et al., Protective effect of zinc against lethality in irradiated mice, Environ. Res. 41, 558–567 (1986).

    Article  PubMed  CAS  Google Scholar 

  47. L. Cai and M. G. Cherian, A daptive response to ionizing radiation-induced chromosome aberrations in rabbit lymphocytes: effect of pre-exposure to zinc, and copper salts, Mutat. Res. 369, 233–241 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. G. L. Floersheim and P. Floersheim, Protection against ionising radiation and synergism with thiols by zinc aspartate, Br. J. Radiol. 59, 597–602 (1986).

    PubMed  CAS  Google Scholar 

  49. M. T. Leccia, M. J. Richard, J. C. Beani, et al., Protective effect of selenium and zinc on UV-A damage in human skin fibroblasts, Photochem. Photobiol. 58, 548–553 (1993).

    PubMed  CAS  Google Scholar 

  50. F. W. Sunderman, Jr., The influence of zinc on apoptosis, Ann. Clin. Lab. Sci. 25, 134–142 (1995).

    PubMed  CAS  Google Scholar 

  51. G. L. Floersheim and A. Bieri, Further studies on selective radioprotection by organic zinc salts and synergism of zinc aspartate with WR 2721, Br. J. Radiol. 63, 468–475 (1990).

    Article  PubMed  CAS  Google Scholar 

  52. C. K. Bomfort, S. B. Sherriff, I. H. Kunkler, et al., Textbook of Radiotherapy, 5th ed. Longman, London (1993).

    Google Scholar 

  53. R. M. Nagler, Y. Eichen and A. Nagler, Redox metal chelation ameliorates radiation-induced bone marrow toxicity in a mouse model, Radiat. Res. 156, 205–209 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vecdi Ertekin, M., Karslioĝlu, I., Erdem, F. et al. Zinc sulfate in the prevention of total-body irradiation-induced early hematopoietic toxicity. Biol Trace Elem Res 100, 63–73 (2004). https://doi.org/10.1385/BTER:100:1:063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:100:1:063

Index Entries

Navigation