Skip to main content
Log in

Use of glucose feeding to produce concentrated yeast cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A defined medium and fed-batch feeding process for the production of a yeast biocatalyst, developed at the 23-L scale, was scaled up to the 600-L pilot scale. Presterilized 100-L-vol plastic bags were implemented for the pilotscale nutrient feeding. Medium of increased concentration Ôqs implemented at the pilot scale, and equivalent dry cell weights were reached with a medium 80% more concentrated than that used at the laboratory scale. The higher medium concentration was believed to be necessary at the pilot scale owing to the additional heat stresses on key components (e.g., complexing of magnesium sulfate with phosphate), increased dilution during sterilization, lower evaporation rate owing to the lower vessel volume per minute air flow rate, and increased dilution owing to nutrient feeding or shot additions. Peak cell density was found to be somewhat insensitive to variations in residual glucose levels. These results suggest that defined medium developed at the laboratory scale may need to be further optimized at the pilot scale for equivalent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strohl, W. H. (1994), Genet. Eng. News 14(16), 10, 12.

    Google Scholar 

  2. Stinson, S. C. (1999), C&EN 77(41), 101.

    Google Scholar 

  3. Stinson, S. C. (1999), C&EN 77(29), 65.

    Google Scholar 

  4. Ferraboschi, P., Reza-Elahi, S., Verza, E., and Santaniello, E. (1999), Tetrahedron Asymm. 10, 2639–2642.

    Article  CAS  Google Scholar 

  5. D’Arrigo, P., Fuganti, C., Fantoni, P., and Servi, S. (1998), Tetrahedron 54, 15,017–15,026.

    Article  CAS  Google Scholar 

  6. Clark, W. M., Kassick, A. J., Plotkin, M. A., Eldridge, A. M., and Lantos, I. (1999), Org. Lett. 1(11), 1839–1842.

    Article  PubMed  CAS  Google Scholar 

  7. Crocq, V., Masson, C., Winter, J., Richard, C., Lemaitre, G., Lenay, J., Vivat, M., Buendia, J., and Prat, D. (1997), Org. Proc. Res. Dev. 1(1), 2–13.

    Article  CAS  Google Scholar 

  8. Zhao, Y. and DeLancey, G. (1999), Biotechnol. Bioeng. 64(4), 434–441.

    Article  PubMed  CAS  Google Scholar 

  9. Fronza, G., Fuganti, C., Mendozza, M., Rigoni, R., Servi, S., and Zucchi, G. (1996), Pure Appl. Chem. 68(11), 2065–2071.

    CAS  Google Scholar 

  10. Kawai, Y., Saitou, K., Hida, K., and Ohno, A. (1995), Tetrahedron Asymm. 6(9), 2143–2144.

    Article  CAS  Google Scholar 

  11. Ferraboschi, P., Grisenti, P., Casati, R., Fiecchi, A., and Santaniello, E. (1987), J. Chem. Soc. Perkin Trans. I, 1743–1748.

    Article  Google Scholar 

  12. Sakai, T., Matsumoto, S., Hidaka, S., Imajo, N., Tsuboi, S., and Utaka, M. (1991), Bull. Chem. Soc. Jpn. 64, 3473–3475.

    Article  CAS  Google Scholar 

  13. Aleu, J., Fronza, G., Fuganti, C., Perozzo, V., and Serra, S. (1998), Tetrahedron Asymm. 9, 1589–1596.

    Article  CAS  Google Scholar 

  14. Utaka, M., Konishi, S., Mizuoka, A., Ohkubo, T., Sakai, T., Tsuboi, S., and Takeda, A. (1989), J. Org. Chem. 54, 4989–4992.

    Article  CAS  Google Scholar 

  15. Zurbriggen, B., Bailey, M. J., Penttilä, M. E., Poutanen, K., and Linko, M. (1990), J. Biotechnol. 13, 267–278.

    Article  PubMed  CAS  Google Scholar 

  16. Gordillo, M. A., Montesinos, J. L., Casas, C., Valero, F., Lafuente, J., and Solà, C. (1998), Chem. Phys. Lipids 93, 131–142.

    Article  PubMed  CAS  Google Scholar 

  17. Marek, A. and Bednarski, W. (1996), Biotechnol. Lett. 18(10), 1155–1160.

    Article  CAS  Google Scholar 

  18. Kapat, A., Jung, J. K., Park, Y. H., Hong, S. Y., and Choi, H. K. (1998), Bioprocess Eng. 18, 347–351.

    CAS  Google Scholar 

  19. Nishizawa, M., Shimizu, M., Ohkawa, H., and Kanaoka, M. (1995), Appl. Environ. Microbiol. 61(9), 3208–3215.

    PubMed  CAS  Google Scholar 

  20. Belo, I. and Mota, M. (1998), Bioprocess Eng. 18, 451–455.

    CAS  Google Scholar 

  21. Kim, J.-W., Park, T. J., Ryu, D. D. Y., and Kim, J.-Y. (2000), Biotechnol. Prog. 16, 657–660.

    Article  PubMed  CAS  Google Scholar 

  22. Whitaker, A. (1980), Process Biochem. 15(4), 10–15, 32.

    CAS  Google Scholar 

  23. De Laat, W., Preusting, J., and Koekman, B. (1998), Patent WO 98/37179.

  24. Chartrain, M., Roberge, C., Chung, J., McNamara, J., Zhao, D., Olewinski, R., Hunt, G., Salmon, P., Roush, D., Yamazaki, S., Wang, T., Grabowski, E., Buckland, B., and Greasham, R. (1999), Enzyme Microb. Technol. 25, 489–496.

    Article  CAS  Google Scholar 

  25. Junker, B. H., Stanik, M., Barna, C., Salmon, P., Paul, E., and Buckland, B. C. (1998), Bioprocess Eng. 18, 401–412.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth H. Junker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junker, B.H., Mann, Z., Seeley, A. et al. Use of glucose feeding to produce concentrated yeast cells. Appl Biochem Biotechnol 97, 63–78 (2002). https://doi.org/10.1385/ABAB:97:2:063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:97:2:063

Index Entries

Navigation