Applied Biochemistry and Biotechnology

, Volume 96, Issue 1–3, pp 225–238 | Cite as

Immobilization and stabilization of biomaterials for biosensor applications

Article

Abstract

Biosensors are finding applications in a variety of analytical fields. A biosensor basically consists of a transducer in conjunction with a biologically active molecule that converts a biochemical signal into a quantifiable electric response. The specificity of the biosensor depends on the selection of the biomaterial. Enzymes, antibodies, DNA, receptors, organelles, microorganisms as well as animal and plant cells or tissues have been used as biologic sensing materials. Advances in biochemistry, molecularbiology, and immunochemistry are expected to lead to a rapid expansion in the range of biologic recognition elements to be used in the field of biosensors. Biomaterials that are stable and function even in highly acidic, alkaline, hydrophobic, or oxidizing environments as well as stable to high temperature and immune to toxic substrates in the processing stream will play an important role. Techniques for immobilization of the biomaterials have played a significant role in the biosensor field. Immobilization not only brings about the intimate contact of the biologic catalysts with the transducer, but also helps in the stabilization of the biologic system, thus enhancing its operational and storage stability. A number of techniques have been developed in our laboratory for the immobilization of enzymes, multienzyme systems, cells, and enzymecell conjugates. Some of these aspects that are of significance in biosensor applications have been highlighted.

Index Entries

Biosensors immobilization stabilization permeabilized cells microbial sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mulchandani, A. and Rogers, K. R., eds. (1998), Enzyme and Microbial Biosensors: Techniques and Protocols, Humana, Totowa, NJ.Google Scholar
  2. 2.
    Ramsay, G., ed. (1998), Commercial Biosensors: Applications to Clinical, Bioprocess and Environmental Samples, John Wiley & Sons, London.Google Scholar
  3. 3.
    Nikolelis, D., Krull, U., Wang, J., and Mascini, M., eds. (1998), Biosensors for Direct Monitoring of Environmental Pollutants in Field, Kluwer Academic, London.Google Scholar
  4. 4.
    Rogers, K. R. and Gerlach, C. L. (1996), Environ. Sci. Technol. 30, 486A-491A.Google Scholar
  5. 5.
    Marty, J.-L., Olive, D., and Asano, Y. (1997), Environ. Technol. 18, 333–337.Google Scholar
  6. 6.
    Bart, J. C., Judd, L. L., Hoffman, K. E., Wilkins, A. M., and Kusterbeck, A. W. (1997), Environ. Sci. Technol. 31, 1505–1511.CrossRefGoogle Scholar
  7. 7.
    Trojanowicz, M. and Hitchman, M. L. (1996), Trends Anal. Chem. 15, 38–45.Google Scholar
  8. 8.
    Blum, L. J. and Coulet, P. R., eds. (1991), Biosensor Principles and Applications. Marcel Dekker, NY.Google Scholar
  9. 9.
    Rella, R., Ferrara, D., Barison, G., Doretti, L., and Lora, S. (1996), Biotechnol. Appl. Biochem. 24, 83–88.Google Scholar
  10. 10.
    Daniel, R. M. (1996), Enzyme Microb. Technol. 19, 74–79.CrossRefGoogle Scholar
  11. 11.
    Arnold, F. H. (1998), Proc. Natl. Acad. Sci. USA 95, 2035,2036.PubMedCrossRefADSGoogle Scholar
  12. 12.
    Brenchley, J. E. (1996), J. Ind. Microbiol. Biotechnol. 17, 432–437.CrossRefGoogle Scholar
  13. 13.
    Nandakumar, R. and Mattiasson, B. (1999), Biotechnol. Techniques 13, 689–693.CrossRefGoogle Scholar
  14. 14.
    Daniel, R. M., Bragger, J. M., and Morgan, H. W. (1990), in Biocatalysis, Abvamowicz, D. A., ed., Van Nostrand Reinhold, NY, pp. 243–254.Google Scholar
  15. 15.
    Srinivasan, M. C. (1994), Curr. Sci. 66, 137–140.Google Scholar
  16. 16.
    Janson, J.-C. and Ryden, L., eds. (1998), Protein Purification. Principles, High Resolution Methods, and Applications, Wiley-Liss, NY.Google Scholar
  17. 17.
    Hatti-Kaul, R., ed. (2000), Aqueous Two-Phase Systems: Methods and Protocols. Humana, Totowa, NJ.Google Scholar
  18. 18.
    Deshpande, A., Sankaran, K., D’Souza, S. F., and Nadkarni, G. B. (1987), Biotechnol. Techniques 1, 55–58.CrossRefGoogle Scholar
  19. 19.
    D’Souza, S. F. (1989), Indian J. Microbiol. 29, 83–117.Google Scholar
  20. 20.
    Bickerstaff, G. F., ed. (1997), Immobilization of Enzymes and Cells, Humana, Totowa, NJ.Google Scholar
  21. 21.
    D’Souza, S. F. (1999), in Advances in Bioprocessing and r-DNA Technology, Bihari, V. and Agarwal, S. C., eds., Modern Printers, Lucknow, India, pp. 107–125.Google Scholar
  22. 22.
    Godbole, S. S., Kaul, R., D’Souza, S. F., and Nadkarni, G. B. (1983), Biotechnol. Bioeng. 25, 217–224.CrossRefGoogle Scholar
  23. 23.
    D’Souza, S. F. and Nadkarni, G. B. (1980), Biotechnol. Bioeng. 22, 2191–2205.CrossRefGoogle Scholar
  24. 24.
    D’Souza, S. F. and Nadkarni, G. B. (1980), Enzyme Microb. Technol. 2, 217–222.CrossRefGoogle Scholar
  25. 25.
    Godbole, S. S., D’Souza, S. F., and Nadkarni, G. B. (1980), Enzyme Microb. Technol. 2, 223–226.CrossRefGoogle Scholar
  26. 26.
    Deshpande, A., D’Souza, S. F., and Nadkarni, G. B. (1987), J. Biosci. 11, 137–144.Google Scholar
  27. 27.
    Patil, A. and D’Souza, S. F. (1997), J. Gen. Appl. Microbiol. 43, 163–167.PubMedGoogle Scholar
  28. 28.
    Kamath, N. and D’Souza, S. F. (1992), Enzyme Microb. Technol. 13, 935–938.CrossRefGoogle Scholar
  29. 29.
    Katrlik, J., Svorc, J., Rosenberg, M., and Miertus, S. (1996), Anal. Chim. Acta 331, 225–232.CrossRefGoogle Scholar
  30. 30.
    Corbisier, P., Thiry, E., and Diels, L. (1996), Environ. Toxicol. Water Qual. 11, 171–177.CrossRefADSGoogle Scholar
  31. 31.
    Gu, M. B. and Dhurjati, P. S. (1996), Biotechnol. Prog. 12, 393–397.PubMedCrossRefGoogle Scholar
  32. 32.
    Svitel, J., Curilla, O., and Tkac, J. (1998), Biotechnol. Appl. Biochem. 27, 153–158.PubMedGoogle Scholar
  33. 33.
    D’Souza, S. F. and Melo, J. S. (1991), Enzyme Microb. Technol. 13, 508–511.PubMedCrossRefGoogle Scholar
  34. 34.
    Kaul, R., D’Souza, S. F., and Nadkarni, G. B. (1986), J. Microb. Biotechnol. 1, 12–19.Google Scholar
  35. 35.
    Mazzei, F., Botre, F., Lorenti, G., Simonetti, G., Porcelli, F., Scibona, G., and Botre, C. (1995), Anal. Chim. Acta 316, 79–82.CrossRefGoogle Scholar
  36. 36.
    Skladal, P. (1997), Electroanalysis 9, 737–744.CrossRefGoogle Scholar
  37. 37.
    Rogers, K. R. and Mulchandani, A. (1998), Affinity Biosensors: Techniques and Protocols, Humana, Totowa, NJ.Google Scholar
  38. 38.
    Fojta, M. and Palecek, E. (1997), Anal. Chim. Acta 342, 1–12.CrossRefGoogle Scholar
  39. 39.
    Cheng, J., Sheldon, E. L., Wu, L., Uribe, A., Gerrue, L. O., Carrino, J., Heller, M., and O’Connell, O. (1998), Nat. Biotechnol. 16, 541–546.PubMedCrossRefGoogle Scholar
  40. 40.
    D’Souza, S. F. (1998), Curr. Sci. 77, 69–79.Google Scholar
  41. 41.
    Bonnington, L. S., Henderson, W., and Petach, H. H. (1995), Enzyme Microb. Technol. 17, 746–750.CrossRefGoogle Scholar
  42. 42.
    Melo, J. S. and D’Souza, S. F. (1992), Appl. Biochem. Biotechnol. 32, 159–170.PubMedGoogle Scholar
  43. 43.
    Husain, S. and Jafri, F. (1995), Biochem. Mol. Biol. Int. 36, 669–677.PubMedGoogle Scholar
  44. 44.
    Das, N., Prabhakar, P., Kayastha, A. M., and Srivastava, R. C. (1997), Biotechnol. Bioeng. 54, 329–332.CrossRefGoogle Scholar
  45. 45.
    SivaRaman, H., Seetarama Rao, B., Pundle, A. V., and SivaRaman, C. (1982), Biotechnol. Lett. 4, 359–364.CrossRefGoogle Scholar
  46. 46.
    D’Souza, S. F. and Godbole, S. S. (1989), Biotechnol. Lett. 11, 211,212.CrossRefGoogle Scholar
  47. 47.
    Rao, B. Y. K., Godbole, S. S., and D’Souza, S. F. (1988), Biotechnol. Lett. 10, 427–430.CrossRefGoogle Scholar
  48. 48.
    Joshi, N. T. and D’Souza, S. F. (1999), J. Environ. Sci. Health A 34, 1689–1700.Google Scholar
  49. 49.
    Uhlich, T., Ulbricht, M., and Tomaschewski, G. (1996), Enzyme Microb. Technol. 19, 124–131.CrossRefGoogle Scholar
  50. 50.
    Araujo, A. M., Neves, M. T., Jr., Azevedo, W. M., Oliveira, G. G., Ferreira, Jr., D. L., Coelho, R. A. L., Figueiredo, E. P. A., and Carvalho, L. B., Jr. (1997), Biotechnol. Techniques 11, 67–70.CrossRefGoogle Scholar
  51. 51.
    Walcerz, I., Koncki, R., Leszczynska, E., Salamonowicz, B., and Glab, S. (1996), Anal. Lett. 29, 1939–1953.Google Scholar
  52. 52.
    Ulbricht, M. and Papra, A. (1997), Enzyme Microb. Technol. 20, 61–68.CrossRefGoogle Scholar
  53. 53.
    D’Urso, E. M. and Fortier, G. (1996), Enzyme Microb. Technol. 18, 482–488.CrossRefGoogle Scholar
  54. 54.
    Sung, W. J. and Bae, Y. H. (2000), Anal. Chem. 72, 2177–2181.PubMedCrossRefGoogle Scholar
  55. 55.
    Mattiasson, B. (1982), Appl. Biochem. Biotechnol. 7, 121–125.Google Scholar
  56. 56.
    D’Souza, S. F. and Deshpande, A. (2000), Appl. Biochem. Biotechnol., in press.Google Scholar
  57. 57.
    Nakas, J. P. and Slomczynski, D. J. (1996), Anal. Lett. 29, 1907–1919.Google Scholar
  58. 58.
    Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991), Science 251, 767–773.PubMedCrossRefADSGoogle Scholar
  59. 59.
    Kleinfeld, D., Kahler, K. H., and Hockberger, P. E. (1988), J. Neurosci. 8, 4098–4120.PubMedGoogle Scholar
  60. 60.
    Ahluwalia, A., De Rossi, D., and Schirone A. (1992), Thin Solid Films 210/211, 726–729.CrossRefGoogle Scholar
  61. 61.
    Godbole, S. S., D’Souza, S. F., and Nadkarni, G. B. (1983), Enzyme Microb. Technol. 5, 125–128.CrossRefGoogle Scholar
  62. 62.
    Smidsord, O. and Skjak-Braek, G. (1990), Trends Biotechnol. 8, 71–78.CrossRefGoogle Scholar
  63. 63.
    Gupte, A. and D’Souza, S. F. (1999), J. Biochem. Biophys. Methods 40, 39–44.PubMedCrossRefGoogle Scholar
  64. 64.
    D’Souza, S. F. and Nadkarni, G. B. (1981), Biotechnol. Bioeng. 23, 431–436.CrossRefGoogle Scholar
  65. 65.
    D’Souza, S. F., Kaul, R., and Nadkarni, G. B. (1985), Biotechnol. Lett. 7, 589–592.CrossRefGoogle Scholar
  66. 66.
    Marolia, K. Z. and D’Souza, S. F. (1994), J. Food Sci. Technol. 31, 153–155.Google Scholar
  67. 67.
    Kaul, R., D’Souza, S. F., and Nadkarni, G. B. (1983), Biotechnol. Bioeng. 25, 887–889.CrossRefGoogle Scholar
  68. 68.
    Marolia, K. Z. and D’Souza, S. F. (1999), J. Biochem. Biophys. Methods 39, 115–117.PubMedCrossRefGoogle Scholar
  69. 69.
    Deshpande, A., D’Souza, S. F., and Nadkarni, G. B. (1986), Indian J. Biochem. Biophys. 23, 353,354.PubMedGoogle Scholar
  70. 70.
    D’Souza, S. F. (1990), Food Biotechnol. 4, 373–382.Google Scholar
  71. 71.
    Tomalia, D. A. and Killat G. R. (1988), in Encyclopedia of Polymer Science and Engineering, vol. 1, 2nd ed., Mark, H. F., Overberger, C. G., Bikales, N. M., and Menges, G., eds., Wiley Interscience, NY, pp. 680–739.Google Scholar
  72. 72.
    D’Souza, S. F., Melo, J. S., Deshpande, A., and Nadkarni, G. B. (1986), Biotechnol. Lett. 8, 643–648.CrossRefGoogle Scholar
  73. 73.
    D’Souza, S. F. and Kamath, N. (1988), Appl. Microbiol. Biotechnol. 29, 136–140.CrossRefGoogle Scholar
  74. 74.
    Kamath, N., Melo, J. S., and D’Souza, S. F. (1991), Trends Biomater. Artif. Organs 5, 67–71.Google Scholar
  75. 75.
    Godbole, S. S., Kubal, B. S., and D’Souza, S. F. (1990), Enzyme Microb. Technol. 12, 214–217.PubMedCrossRefGoogle Scholar
  76. 76.
    Sankaran, K., Godbole, S. S., and D’Souza, S. F. (1989), Enzyme Microb. Technol. 11, 617–619.CrossRefGoogle Scholar
  77. 77.
    Kamath, N., Melo, J. S., and D’Souza, S. F. (1988), Appl. Biochem. Biotechnol. 19, 251–258.CrossRefGoogle Scholar
  78. 78.
    Kumar, S. D., Kulkarni, A. V., Dhaneshwar, R. G., and D’Souza, S. F. (1992), Bioelectrochem. Bioenergetics 27, 153–160.CrossRefGoogle Scholar
  79. 79.
    Kumar, S. D., Kulkarni, A. V., Dhaneshwar, R. G., and D’Souza, S. F. (1994), Bioelectrochem. Bioenergetics 34, 195–198.CrossRefGoogle Scholar
  80. 80.
    Melo, J. S., Kubal, B. S., and D’Souza, S. F. (1992), Food Biotechnol. 6, 175–186.Google Scholar
  81. 81.
    Melo, J. S. and D’Souza, S. F. (1999), World J. Microbiol. Biotechnol. 15, 25–27.CrossRefGoogle Scholar
  82. 82.
    Marshall, R. C., ed. (1984), Microbial Adhesion and Aggregation, Springer-Verlag, NY.Google Scholar
  83. 83.
    Guilbault, G. G. (1989), Biotechnology 7, 349–351.CrossRefGoogle Scholar
  84. 84.
    Dominguez, E., Lan, H. L., Okamoto, Y., Hale, P. D., Skotheim, T. A., Gorton, L., and Hahn-Hagerdal, B. (1993), Biosens. Bioelectron. 8, 229–237.CrossRefGoogle Scholar
  85. 85.
    Nandakumar, R. and Mattiasson, B. (1999), Anal. Lett. 32, 2379–2393.Google Scholar
  86. 86.
    Blanco, R. M., Calvete, J. J., and Guisan, J. M. (1988), Enzyme Microb. Technol. 11, 353–359.CrossRefGoogle Scholar
  87. 87.
    Tyagi, R., Batra, R., and Gupta, M. N. (1999), Enzyme Microb. Technol. 24, 348–354.CrossRefGoogle Scholar
  88. 88.
    Ryan, O., Smyth, M. R., and O’Fagain, C. (1994), Enzyme Microb. Technol. 16, 501–505.PubMedCrossRefGoogle Scholar
  89. 89.
    Miland, E., Smyth, M. R., and O’Fagain, C. (1996), Enzyme Microb. Technol. 18, 63–67.CrossRefGoogle Scholar
  90. 90.
    Tanaka, A. and Kawamoto, T. (1991), in Protein Immobilization, Taylor, R. F., ed., Marcel Dekker, NY, pp. 183–208.Google Scholar
  91. 91.
    Dordick, J. S. (1989), Enzyme Microb. Technol. 11, 194–211.CrossRefGoogle Scholar
  92. 92.
    St. Clair, N. L. and Navia, M. A. (1992), J. Am. Chem. Soc. 114, 7314–7316.CrossRefGoogle Scholar
  93. 93.
    D’Souza, S. F. (1983), Biotechnol. Bioeng. 25, 1661–1664.CrossRefGoogle Scholar
  94. 94.
    D’Souza, S. E., Altekar, W., and D’Souza, S. F. (1992), J. Biochem. Biophys. Methods 24, 239–247.PubMedCrossRefGoogle Scholar
  95. 95.
    D’Souza, S. E., Altekar, W., and D’Souza, S. F. (1997), World J. Microbiol. Biotechnol. 13, 561–564.CrossRefGoogle Scholar
  96. 96.
    D’Souza, S. F. and Marolia, K. Z. (1999), Biotechnol. Techniques 13, 375–378.CrossRefGoogle Scholar
  97. 97.
    Schomburg, D. (1990), Food Biotechnol. 4, 329–336.CrossRefGoogle Scholar
  98. 98.
    Benkovic, S. J. (1992), Annu. Rev. Biochem. 61, 29–54.PubMedCrossRefGoogle Scholar
  99. 99.
    Huang, X. L., Walsh, M. K., and Swaisgood, H. E. (1996), Enzyme Microb. Technol. 19, 378–383.CrossRefGoogle Scholar
  100. 100.
    Koyano, T., Saito, M., Miyamato, Y., Kaifu, K., and Kato, M. (1996), Biotechnol. Prog. 12, 141–144.CrossRefGoogle Scholar
  101. 101.
    Murai, T., Ueda, M., Atomi, H., Shibasaki, Y., Kamsava, N., Osumi, N., Kawaguchi, T., Arai, M., and Tanaka, A. (1997), Appl. Microbiol. Biotechnol. 48, 499–503.PubMedCrossRefGoogle Scholar
  102. 102.
    Mulchandani, A., Mulchandani, P., Kaneva, I., and Chen, W. (1998), Anal. Chem. 70, 4140–4145.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  1. 1.Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations