Advertisement

Applied Biochemistry and Biotechnology

, Volume 96, Issue 1–3, pp 71–82 | Cite as

Semi-solid-state fermentation of Eicchornia crassipes biomass as lignocellulosic biopolymer for cellulase and β-glucosidase production by cocultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC164

Article

Abstract

An aquatic weed biomass, Eicchornia crassipes, present in abundance and leading to a threatening level of water pollution was used as substrate for cellulase and β-glucosidase production using wild-type strain Aspergillus niger RK3 that was isolated from decomposing substrate. Alkali treatment of the biomass (10%) resulted in a 60–66% increase in endoglucanase, exoglucanase, and β-glucosidase production by the A. niger RK3 strain in semi-solid-state fermentation. Similarly, the alkali-treated biomass led to a 45–54% increase in endo- and exoglucanase and a higher (98%) increase in β-glucosidase production by Trichoderma reesei MTCC164 under similar conditions. However, the cocultivation of A. niger RK3 and T. reesei MTCC164 at a ratio of 3:1 showed a 20–24% increase in endo- and exoglucanase activities and about a 13% increase in the β-glucosidase activity over the maximum enzymatic activities observed under single culture conditions. Multistep physical (ultraviolet) and chemical (N-methyl-N′-nitrosoguanidine, sodium azide, colchicine) mutagenesis of the A. niger RK3 strain resulted in a highly cellulolytic mutant, UNSC-442, having an increase of 136, 138, and 96% in endoglucanase, exoglucanase, and β-glucosidase, activity, respectively. The cocultivation of mutant UNSC-442 along with T. reesei MTCC164 (at a ratio of 3:1) showed a further 10–11% increase in endo- and exoglucanase activities and a 29% increase in β-glucosidase activity in semi-solid-state fermentation.

Index Entries

Cellulase β-glucosidase Eicchornia crassipes cocultivation mutagenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kaya, F., Heitmann, J. A., and Joyce, T. W. (1996). J. Biotechnol. 45, 23–31.CrossRefGoogle Scholar
  2. 2.
    Jackson, L. S., Joyce, T. W., Heitmann, J. A., and Giesbrecht, F. G. (1996), J. Biotechnol. 45, 33–44.CrossRefGoogle Scholar
  3. 3.
    Sugden, C. and Bhat, M. K. (1994), World J. Microbiol. Biotechnol. 10, 444–451.CrossRefGoogle Scholar
  4. 4.
    Teunissen, M. J., Lahaye, D. H. T. P., Veld, J. H. J. H., and Vogels, G. D. (1992), Arch. Microbiol. 158, 276–281.CrossRefGoogle Scholar
  5. 5.
    Stahlberg, J., Johansson, G., and Pettersson, G. C. (1991), Biotechnology 9, 286–290.CrossRefGoogle Scholar
  6. 6.
    Muniswaran, P. K. A. and Charyulu, N. C. L. N. (1994), Enzyme Microb. Technol. 16, 436–440.CrossRefGoogle Scholar
  7. 7.
    Madamwar, D. and Patel, S. (1992), in Industrial Biotechnology, Malik, V. S. and Sridhar, P., eds., Oxford & IBH Publ., New Delhi, pp. 471–478.Google Scholar
  8. 8.
    Schwarz, W. H., Jauris, S., Kouba, M., Bronnenmeier, K., and Standenbauer, W. L. (1989), Biotechnol. Lett. 11, 461–466.CrossRefGoogle Scholar
  9. 9.
    Singh, A., Abidi, A. B., Agrawal, A. K., and Darmwal, N. S. (1989), Folia Microbiol. 34, 479–484.Google Scholar
  10. 10.
    Nelson, N. and Oliver, D. W. (1971), J. Polym. Sci. Part C 36, 305–320.Google Scholar
  11. 11.
    Lakhani, A. (1990), PhD thesis, University of Roorkee, Roorkee, India.Google Scholar
  12. 12.
    Kuhad, R. C., Kumar, M., and Singh, A. (1994), Lett. Appl. Microbiol. 19, 397–400.PubMedGoogle Scholar
  13. 13.
    Reyes, L. M. and Noyola, T. P. (1998), Biotechnol. Lett. 20, 443–446.CrossRefGoogle Scholar
  14. 14.
    Zohrer, E., Albertini, S., Gocke, E., and Knasmuller, S. (1996), Mut. Res. 356, 155–161.Google Scholar
  15. 15.
    Lotfi, C. F. P. and Santelli, G. M. N. (1996), Mut. Res. 349, 77–83.Google Scholar
  16. 16.
    Gupte, A. and Madamwar, D. (1997), Biotechnol. Prog. 13, 166–169.CrossRefGoogle Scholar
  17. 17.
    Singh, A., Abidi, A. B., Darmwal, N. S., and Agrawal, A. K. (1991), Agric. Biol. Res. 7, 19–27.Google Scholar
  18. 18.
    Rajendran, A., Gunasekaran, P., and Laxmanan, N. (1994), Indian J. Microbiol. 34, 289–295.Google Scholar
  19. 19.
    Miller, G. L. (1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  20. 20.
    Menon, K., Rao, K. K., and Pushalkar, S. (1994), Indian J. Exp. Biol. 32, 706–709.Google Scholar
  21. 21.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 93, 265–273.Google Scholar
  22. 22.
    Weil, J., Westgate, P., Kohlmann, K., and Ladisch, M. R. (1994), Enzyme Microb. Technol. 16, 1002–1004.PubMedCrossRefGoogle Scholar
  23. 23.
    Koullas, D. P., Christakopoulos, P. F., Kekos, D., Koukios, E. G., and Macris, B. J. (1993), Biomass Energy 4, 9–13.CrossRefGoogle Scholar
  24. 24.
    Arora, D. S. and Sandhu, D. K. (1986), Acta Biotechnol. 6, 293–297.CrossRefGoogle Scholar
  25. 25.
    Pandey, A., Selvakumar, P., Soccol, C. R., and Nigam, P. (1999), Current. Sci. 77, 149–162.Google Scholar
  26. 26.
    Madamwar, D., Patel, S., and Parikh, H. (1989), J. Ferment. Technol. 67, 424–426.Google Scholar
  27. 27.
    Gutierrez-Correa, M. and Tengerdy, R. P. (1998), Biotechnol. Lett. 20, 45–47.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  1. 1.Department of Biosciences and BiotechnologyUniversity of RoorkeeRoorkeeIndia

Personalised recommendations