Skip to main content
Log in

Semi-solid-state fermentation of Eicchornia crassipes biomass as lignocellulosic biopolymer for cellulase and β-glucosidase production by cocultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC164

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An aquatic weed biomass, Eicchornia crassipes, present in abundance and leading to a threatening level of water pollution was used as substrate for cellulase and β-glucosidase production using wild-type strain Aspergillus niger RK3 that was isolated from decomposing substrate. Alkali treatment of the biomass (10%) resulted in a 60–66% increase in endoglucanase, exoglucanase, and β-glucosidase production by the A. niger RK3 strain in semi-solid-state fermentation. Similarly, the alkali-treated biomass led to a 45–54% increase in endo- and exoglucanase and a higher (98%) increase in β-glucosidase production by Trichoderma reesei MTCC164 under similar conditions. However, the cocultivation of A. niger RK3 and T. reesei MTCC164 at a ratio of 3:1 showed a 20–24% increase in endo- and exoglucanase activities and about a 13% increase in the β-glucosidase activity over the maximum enzymatic activities observed under single culture conditions. Multistep physical (ultraviolet) and chemical (N-methyl-N′-nitrosoguanidine, sodium azide, colchicine) mutagenesis of the A. niger RK3 strain resulted in a highly cellulolytic mutant, UNSC-442, having an increase of 136, 138, and 96% in endoglucanase, exoglucanase, and β-glucosidase, activity, respectively. The cocultivation of mutant UNSC-442 along with T. reesei MTCC164 (at a ratio of 3:1) showed a further 10–11% increase in endo- and exoglucanase activities and a 29% increase in β-glucosidase activity in semi-solid-state fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaya, F., Heitmann, J. A., and Joyce, T. W. (1996). J. Biotechnol. 45, 23–31.

    Article  CAS  Google Scholar 

  2. Jackson, L. S., Joyce, T. W., Heitmann, J. A., and Giesbrecht, F. G. (1996), J. Biotechnol. 45, 33–44.

    Article  CAS  Google Scholar 

  3. Sugden, C. and Bhat, M. K. (1994), World J. Microbiol. Biotechnol. 10, 444–451.

    Article  CAS  Google Scholar 

  4. Teunissen, M. J., Lahaye, D. H. T. P., Veld, J. H. J. H., and Vogels, G. D. (1992), Arch. Microbiol. 158, 276–281.

    Article  CAS  Google Scholar 

  5. Stahlberg, J., Johansson, G., and Pettersson, G. C. (1991), Biotechnology 9, 286–290.

    Article  Google Scholar 

  6. Muniswaran, P. K. A. and Charyulu, N. C. L. N. (1994), Enzyme Microb. Technol. 16, 436–440.

    Article  CAS  Google Scholar 

  7. Madamwar, D. and Patel, S. (1992), in Industrial Biotechnology, Malik, V. S. and Sridhar, P., eds., Oxford & IBH Publ., New Delhi, pp. 471–478.

    Google Scholar 

  8. Schwarz, W. H., Jauris, S., Kouba, M., Bronnenmeier, K., and Standenbauer, W. L. (1989), Biotechnol. Lett. 11, 461–466.

    Article  CAS  Google Scholar 

  9. Singh, A., Abidi, A. B., Agrawal, A. K., and Darmwal, N. S. (1989), Folia Microbiol. 34, 479–484.

    CAS  Google Scholar 

  10. Nelson, N. and Oliver, D. W. (1971), J. Polym. Sci. Part C 36, 305–320.

    Google Scholar 

  11. Lakhani, A. (1990), PhD thesis, University of Roorkee, Roorkee, India.

    Google Scholar 

  12. Kuhad, R. C., Kumar, M., and Singh, A. (1994), Lett. Appl. Microbiol. 19, 397–400.

    PubMed  CAS  Google Scholar 

  13. Reyes, L. M. and Noyola, T. P. (1998), Biotechnol. Lett. 20, 443–446.

    Article  Google Scholar 

  14. Zohrer, E., Albertini, S., Gocke, E., and Knasmuller, S. (1996), Mut. Res. 356, 155–161.

    CAS  Google Scholar 

  15. Lotfi, C. F. P. and Santelli, G. M. N. (1996), Mut. Res. 349, 77–83.

    Google Scholar 

  16. Gupte, A. and Madamwar, D. (1997), Biotechnol. Prog. 13, 166–169.

    Article  CAS  Google Scholar 

  17. Singh, A., Abidi, A. B., Darmwal, N. S., and Agrawal, A. K. (1991), Agric. Biol. Res. 7, 19–27.

    Google Scholar 

  18. Rajendran, A., Gunasekaran, P., and Laxmanan, N. (1994), Indian J. Microbiol. 34, 289–295.

    Google Scholar 

  19. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  20. Menon, K., Rao, K. K., and Pushalkar, S. (1994), Indian J. Exp. Biol. 32, 706–709.

    CAS  Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 93, 265–273.

    Google Scholar 

  22. Weil, J., Westgate, P., Kohlmann, K., and Ladisch, M. R. (1994), Enzyme Microb. Technol. 16, 1002–1004.

    Article  PubMed  CAS  Google Scholar 

  23. Koullas, D. P., Christakopoulos, P. F., Kekos, D., Koukios, E. G., and Macris, B. J. (1993), Biomass Energy 4, 9–13.

    Article  CAS  Google Scholar 

  24. Arora, D. S. and Sandhu, D. K. (1986), Acta Biotechnol. 6, 293–297.

    Article  CAS  Google Scholar 

  25. Pandey, A., Selvakumar, P., Soccol, C. R., and Nigam, P. (1999), Current. Sci. 77, 149–162.

    CAS  Google Scholar 

  26. Madamwar, D., Patel, S., and Parikh, H. (1989), J. Ferment. Technol. 67, 424–426.

    CAS  Google Scholar 

  27. Gutierrez-Correa, M. and Tengerdy, R. P. (1998), Biotechnol. Lett. 20, 45–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Singh, R.P. Semi-solid-state fermentation of Eicchornia crassipes biomass as lignocellulosic biopolymer for cellulase and β-glucosidase production by cocultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC164. Appl Biochem Biotechnol 96, 71–82 (2001). https://doi.org/10.1385/ABAB:96:1-3:071

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:96:1-3:071

Index Entries

Navigation