Skip to main content
Log in

Applications of self-assembled monolayers for biomolecular electronics

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Preparation and characterization of ordered ultrathin organic films (a few nanometers to several hundred nanometers) has recently attracted considerable attention because of the possibility of controlling order and interactions at the molecular level and has triggered several innovative applications ranging from molecular electronics to tribology. Monomolecular films prepared by self-assembly are attractive for several exciting applications because of the unique possibility of making the selection of different types of terminal functional groups as well as length scales more flexible. The present article discusses various applications of self-assembled monolayers (SAMs) in molecular electronics ranging from biosensors to optoelectronic devices with specific examples. Similarly, SAMs and multilayers of bifunctional molecules on polycrystalline substrates can be effectively used to carry out specific reactions between pendent functionalities and solution or gaseous species to produce new hybrid materials for devices such as molecular diodes. The importance of SAMs in controlling nucleation and growth is also illustrated using biomimetic synthesis of ceramic thin films (biomineralization) of zirconia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ulman, A. (1991), An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic, NY.

    Google Scholar 

  2. Dubois, L. H. and Nuzzo, R. G. (1992), Annu. Rev. Phys. Chem. 43, 437–463.

    CAS  Google Scholar 

  3. Bain, C. D. and Whitesides, G. M. (1989), Angew. Chem. Int. Ed. Engl. 28, 506–512.

    Article  Google Scholar 

  4. Becka, A. M. and Miller, C. A (1993), J. Phys. Chem. 97, 6233–6239.

    Article  CAS  Google Scholar 

  5. Feldheim, D. L. and Keating, D. C. (1998), Chem. Soc. Rev. 27, 1–12.

    Article  CAS  Google Scholar 

  6. Dorogi, M., Gomez, J., Osifchin, R., Andres, R. P., and Reifenberger, R. (1995), Phys. Rev. B 52(12), 9071–9077.

    Article  CAS  ADS  Google Scholar 

  7. Duan, C. and Meyerhoff, M. E. (1994), Anal. Chem. 66, 1369–1377.

    Article  PubMed  CAS  Google Scholar 

  8. Bain, C. D. and Whitesides, G. M. (1988), J. Am. Chem. Soc. 110, 5897–5900.

    Article  CAS  Google Scholar 

  9. Laibinis, P. E. and Whitesides, G. M. (1992), J. Am. Chem. Soc. 114, 9022–9028.

    Article  CAS  Google Scholar 

  10. Prime, K. L. and Whitesides, G. M. (1991), Science 252, 1164–1167.

    Article  PubMed  CAS  ADS  Google Scholar 

  11. Sagiv, J. (1980), J. Am. Chem. Soc. 102, 92–98.

    Article  CAS  Google Scholar 

  12. Heflin, J. R., Figura, C., Marciu, D., Liu, Y., and Claus, R. O. (1999), Appl. Phys. Lett. 74(4), 495–497.

    Article  CAS  ADS  Google Scholar 

  13. Haddon, R. C. and Lamola, A. A. (1985), Proc. Natl. Acad. Sci. USA 82, 1874.

    Article  PubMed  CAS  ADS  Google Scholar 

  14. Tour, J. M., Kozaki, M., and Seminario, J. M. (1998), J. Am. Chem. Soc. 120, 8486–8492.

    Article  CAS  Google Scholar 

  15. Birge, R. R., ed. (1991), Molecular and Biomolecular Electronics, American Chemical Society, Washington, DC.

    Google Scholar 

  16. Bumm, L. A., Arnold, J. J., Cygan, M. T., Dunbar, T. D., Burgin, T. P., Jones, L., II, Allara, D. L., Tour, J. M., and Weiss, P. S. (1996), Science 271, 1705–1707.

    Article  CAS  ADS  Google Scholar 

  17. Bedard, T. C. and Moore, J. S. (1995), J. Am. Chem. Soc. 117, 10,662–10,671.

    Article  CAS  Google Scholar 

  18. Mao, C., Sun, W., Shen, Z., and Seeman, N. C. (1999), Nature 397, 144–146.

    Article  PubMed  CAS  ADS  Google Scholar 

  19. Balzani, V., Gomez-Lopez, M., and Stoddart, J. F. (1998), Acc. Chem. Res. 31, 405–414.

    Article  CAS  Google Scholar 

  20. Bissell, R. A., Cordova, E., Kaifer, A. E., and Stoddart, J. F. (1994), Nature 369, 133–137.

    Article  CAS  ADS  Google Scholar 

  21. Kelly, T. R., De Silva, H., and Silva, R. A. (1999), Nature 401, 150–155.

    Article  PubMed  CAS  ADS  Google Scholar 

  22. Bilha, S., Ruth, N., and Haim, W. J. (1998), J. Comput. Biol. 5(4), 631–654.

    Article  Google Scholar 

  23. Castner, D. G., Hinds, K., and Grainger, D. W. (1996), Langmuir 12, 5083–5086.

    Article  CAS  Google Scholar 

  24. Giancarlo, C. L. and Flynn, W. G. (1998), Annu. Rev. Phys. Chem. 49, 297–319.

    Article  PubMed  CAS  Google Scholar 

  25. Poirier, G. E. (1997), Chem. Rev. 97, 1117–1127.

    Article  PubMed  CAS  Google Scholar 

  26. Porter, M. D., Bright, T. B., Allara, D. L., and Chidsey, C. E. D. (1987), J. Am. Chem. Soc. 109, 3559–3568.

    Article  CAS  Google Scholar 

  27. Bandyopadhyay, K., Vijayamohanan, K., Venkataraman, M., and Pradeep, T. (1999), Langmuir 15, 5314–5319.

    Article  CAS  Google Scholar 

  28. Bandyopadhyay, K. and Vijayamohanan, K. (1998), Langmuir 14, 6924–6929.

    Article  CAS  Google Scholar 

  29. French, M. and Creager, S. E. (1998), Langmuir 14, 2129–2133.

    Article  CAS  Google Scholar 

  30. Bandyopadhyay, K., Sastry, M., Paul, V., and Vijayamohanan, K. (1997), Langmuir 13, 866–869.

    Article  CAS  Google Scholar 

  31. Bandyopadhyay, K. and Vijayamohanan, K. (1998), Langmuir 14, 625–629.

    Article  CAS  Google Scholar 

  32. Bandyopadhyay, K. and Vijayamohanan, K. (1998), J. Electroanal. Chem. 447, 11–16.

    Article  CAS  Google Scholar 

  33. Lee, H., Kepley, L. J., Hong, H., and Mallouk, T. E. (1988), J. Am. Chem. Soc. 110, 618–620.

    Article  CAS  Google Scholar 

  34. Ansell, M. A., Zeppenfeld, A. C., Yoshimoto, K., Cogan, E. B., and Page, C. J. (1996), Chem. Mater. 8, 591–594.

    Article  CAS  Google Scholar 

  35. Strong, A. E. and Moore, B. D. (1999), J. Mater. Chem. 9, 1097–1105.

    Article  CAS  Google Scholar 

  36. DiMillia, P. A., Folkers, J. P., Biebuyck, H. A., Haerter, R., Lopez, G. P., and Whitesides, G. M. (1994), J. Am. Chem. Soc. 116, 2225, 2226.

    Article  Google Scholar 

  37. Sigal, G. B., Mrksich, M., and Whitesides, G. M. (1998), J. Am. Chem. Soc. 120, 3464–3473.

    Article  CAS  Google Scholar 

  38. Collison, M., Bowden, E. F., and Tarlov, M. J. (1992), Langmuir 8, 1247–1250.

    Article  Google Scholar 

  39. Wink, T., van Zuilen, S. J., Bult, A., and van Bennekom, W. P. (1997), Analyst 122, 43R-50R.

    Article  PubMed  CAS  Google Scholar 

  40. Frey, B. L., Hanken, D. G., and Corn, R. M. (1993), Langmuir 9, 1815–1820.

    Article  CAS  Google Scholar 

  41. Brust, M., Blass, P. M., and Bard, A. J. (1997), Langmuir 13, 5602–5607.

    Article  CAS  Google Scholar 

  42. Collier, C. P., Vossmeyer, T., and Heath, R. J. (1998), Annu. Rev. Phys. Chem. 49, 371–399.

    Article  PubMed  CAS  Google Scholar 

  43. Harfenist, S. A., Wang, Z. L., Whetten, R. L., Wezmar, I., and Alvarez, M. M. (1996), J. Phys. Chem. 100, 13,904–13,910.

    Article  CAS  Google Scholar 

  44. Elghanian, R., Storhoff, J. J., Munic, R. C., Letsinger, L. R., and Mirkin, C. R. (1997), Science 277, 1078–1081.

    Article  PubMed  CAS  Google Scholar 

  45. Nakanishi, T., Ohtani, B., and Uosaki, K. (1998), J. Phys. Chem. B 102, 1571–1577.

    Article  CAS  Google Scholar 

  46. Kagan, C. R., Murray, C. B., and Bawendi, M. G. (1996), Phys. Rev. B 54, 8633–8643.

    Article  CAS  ADS  Google Scholar 

  47. Guzelian, A. A., Katari, J. E. B., Kadavanich, A. V., Banin, U., Hamad, K., Juban, A., and Alivisatos, A. P. (1996), J. Phys. Chem. 100, 7212–7219.

    Article  CAS  Google Scholar 

  48. Yin, J. S. and Wang, Z. L. (1997), Phys. Rev. Lett. 79, 2570–2572.

    Article  CAS  ADS  Google Scholar 

  49. Wang, Z. L., Harfenist, S. A., Whetten, R. L., Bentley, J., and Evans, N. D. (1998), J. Phys. Chem. B 102, 3068–3072.

    Article  CAS  Google Scholar 

  50. Schmid, G., Baumle, M., Geerkens, M., Hein, I., Osemann, C., and Sawitowski, T. (1999), Chem. Soc. Rev. 28, 179–198.

    Article  CAS  Google Scholar 

  51. Vijayasarathi, K., John Thomas, P., Kulkarni, G. U., and Rao, C. N. R. (1999), J. Phys. Chem. B 103, 399–401.

    Article  Google Scholar 

  52. Nozik, A. J., Parsons, C. A., Dunlavy, D. J., Keyes, B. M., and Ahrenkiel, R. K. (1990), Solid State Commun. 75, 297–300.

    Article  CAS  Google Scholar 

  53. Collet, J. and Vuillane (1998), Appl. Phys. Lett. 2681–2683.

  54. Willner, I., Doron, A., and Katz, E. (1998), J. Phys. Org. Chem. 11(8/9), 546–560.

    Article  CAS  Google Scholar 

  55. Bunker, B. C., Rieke, P. C., Tarasevich, B. J., Campbell, A. A., Fryxell, G. E., Graff, G. L., Song, L., Liu, J., Virden, J. W., and Mcvay, G. L. (1994), Science 264, 48–55.

    Article  CAS  ADS  Google Scholar 

  56. Laibinis, P. E., Whitesides, G. M., Allara, D. L., Tao, Y. T., Parikh, A. N., and Nuzzo, R. G. (1991), J. Am. Chem. Soc. 113, 7152–7158.

    Article  CAS  Google Scholar 

  57. Pandey, P. C., Upadhyay, S., and Pathak, H. C. (1999), Electroanalysis 11, 59–65.

    Article  CAS  Google Scholar 

  58. Cooper, E., Parker, L., Scotchford, C. A., Downes, S., Leggett, G. J., and Parker, T. L. (2000), J. Mater. Chem. 10, 133–139.

    Article  CAS  Google Scholar 

  59. Weygand, M., Schalke, M., Howes, P. B., Kjaer, K., Friedmann, J., Wetzer, B., Pum, D., Sleytr, U. B., and Losche, M. (2000), J. Mater. Chem. 10, 141–148.

    Article  CAS  Google Scholar 

  60. Perez-Luna, V. H., O’Brien, M. J., Opperman, K. A., Hampton, P. H., Lopez, G. P., Klumb, L. A., and Stayton, P. S. (1999), J. Am. Chem. Soc. 121, 6469–6478.

    Article  CAS  Google Scholar 

  61. Spinke, J., Liley, M., Schmitt, F. J., Guder, H. J., Angermaier, L., and Knoll, W. (1993), J. Chem. Phys. 99, 7012–7019.

    Article  CAS  ADS  Google Scholar 

  62. Disely, D. M., Blyth, J., Cullen, D. C., You, H., Eapen, S., and Lowe, C. R. (1998), Biosens. Bioelectron. 13(3–4), 383–396.

    Article  Google Scholar 

  63. Tidwell, C. D., Ertel, S. I., and Ratner, B. D. (1997), Langmuir 13, 3404–3413.

    Article  CAS  Google Scholar 

  64. Jenkins, A. T. A., Boden, N., Bushby, R. J., Evans, S. D., Knowles, P. F., Miles, R. E., Ogier, S. D., Schonherr, H., and Vancso, G. J. (1999), J. Am. Chem. Soc. 121, 5274–5280.

    Article  CAS  Google Scholar 

  65. Collison, M., Bowden, E. F., and Tarlov, M. J. (1992), Langmuir 8, 1247–1250.

    Article  Google Scholar 

  66. Malem, F. and Mandler, D. (1993), Anal. Chem. 65, 37–41.

    Article  CAS  Google Scholar 

  67. Creager, S. E. and Olsen, K. G. (1995), Anal. Chim. Acta 307, 277–289.

    Article  CAS  Google Scholar 

  68. Jiang, L., McNeil, C. J., and Cooper, M. J. (1995), J. Chem. Soc. Chem. Commun., 1293–1295.

  69. Millan, K. M. and Mikkelsen, S. R. (1993), Anal. Chem. 65, 2317–2323.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunjukrishna Vijayamohanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayamohanan, K., Aslam, M. Applications of self-assembled monolayers for biomolecular electronics. Appl Biochem Biotechnol 96, 25–39 (2001). https://doi.org/10.1385/ABAB:96:1-3:025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:96:1-3:025

Index Entries

Navigation