Applied Biochemistry and Biotechnology

, Volume 95, Issue 2, pp 113–124 | Cite as

Optimization of secondary metabolite production using singular approximation and minimum principle

  • Jung-Heon Lee
Article
  • 74 Downloads

Abstract

Optimal control profiles as calculated with two control algorithms, singular approximation and minimum principle, are compared in this article. Switching points were determined using the singular approximation by mathematical calculation. The optimal growth rate was calculated using minimum principle. With an increased number of switching points, the calculated optimal control profiles approached the theoretical optimal control profile as calculated using the minimum principle. With three switching times, the product concentration approached 96% of the theoretical optimal control profile. From these results, optimal control can be achieved with more than a three-switching-point approximation.

Index Entries

Optimization singular approximation minimum principle 

Nomenclature

H

Hamiltonian

P

product concentration (g/L)

t

time (d)

tf

final time (d)

V

fermentor volume (L)

X

cell concentration (g/L)

X1

cell mass (g)

X2

product (g)

Greek

λ

adjoint vector

μ

specific growth rate (1/d)

π

specific production rate (1/d)

Subscript

max

maximum

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, J. H., Lee, I. Y., Kim, M. K., and Park, Y. H. (1999), Ind. Microbiol. Biotechnol. 23, 143–148.CrossRefGoogle Scholar
  2. 2.
    Hortacsu, A. and Ryu, D. D. Y. (1990), Biotechnol. Prog. 6, 403–407.CrossRefGoogle Scholar
  3. 3.
    Fiesco, J. C., Egan, K. M., Ritch, T., Koski, R. A., Johes, M., and Bitter, G. A. (1987), Biotechnol. Bioeng. 29, 1113–1121.CrossRefGoogle Scholar
  4. 4.
    Chen, Q., Bentley, W. E., and Weigand, W. A. (1995), Appl. Biochem. Biotechnol. 51, 449–461.CrossRefGoogle Scholar
  5. 5.
    Kuriyama, H., Ishibashi, H., Miyagawa, H., Kobayashi, H., and Mikami, E. (1993), Biotechnol. Lett. 15, 415–420.CrossRefGoogle Scholar
  6. 6.
    Lim, H. C., Tayeb, Y. J., Modak, J. M., and Bonte, P. (1986), Biotechnol. Bioeng. 28, 1408–1420.CrossRefGoogle Scholar
  7. 7.
    Slininger, P. J., Bothast, R. J., Ladisch, M. R., and Okos, M. R. (1990), Biotechnol. Bioeng. 35, 727–731.CrossRefGoogle Scholar
  8. 8.
    Kim, B. S., Lee, S. C., Lee, S. Y., Chang, H. N., Chang, Y. K., and Woo, S. I. (1994), Biotechnol. Bioeng. 43, 892–898.CrossRefGoogle Scholar
  9. 9.
    Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mischenko, E. F. (1964), The Mathematical Theory of Optimal Processes, Brown, D. E., trans., Pergamon, New York.Google Scholar
  10. 10.
    Lee, J.-H. (1999), Appl. Biochem. Biotechnol. 80, 91–106.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Jung-Heon Lee
    • 1
  1. 1.Department of Chemical EngineeringChosun UniversityDonggu, KwangjuKorea

Personalised recommendations