Advertisement

Applied Biochemistry and Biotechnology

, Volume 95, Issue 1, pp 31–43 | Cite as

Controlling electrophoretic trapping of circular DNA by addition of starch preparations to agarose gels

  • Kenneth D. Cole
  • Carlos M. Tellez
  • Richard Nguyen
Article

Abstract

Starch preparations were added to agarose gels to enhance the electrophoretic trapping of circular plasmid DNA. The critical voltages required to trap the open circular (OC) and the supercoiled (SC) forms of a 13.1-kbp plasmid were measured in gels composed of agarose and added starch preparations. Modified starch preparations reduced the critical voltage required to trap the OC form of the plasmid to approximately one-third of the control value (in 1% agarose gels). Amylose (a fraction of starch with a low amount of branching) also reduced the critical voltage to trap the OC form in a similar manner. The critical voltage to trap the SC form of the plasmid was not significantly reduced by the starch preparations. The capacity to trap OC DNA was increased by the addition of higher amounts of the starch preparations added to the gels. Field inversion gel electrophoresis was used to characterize the length of the traps in the gels. The starch preparations and amylose increased the trap lengths approximately twofold. The increased trap length correlated with the decreased critical voltage required to trap the OC form of the 13.1-kbp plasmid.

Index Entries

Electrophoresis DNA agarose gel trapping starch circular DNA plasmid separation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloemendal, H. (1960), J. Chromatogr. 3, 1–10.CrossRefGoogle Scholar
  2. 2.
    Gordon, A. H. (1969), in Laboratory Techniques in Biochemistry and Molecular Biology, vol. 1, Work, T. S. and Work, E., eds., North-Holland Publishing, Amsterdam, pp. 1–150.Google Scholar
  3. 3.
    Buleon, A., Colonna, P., Planchot, V., and Ball, S. (1998), Int. J. Biol. Macromol. 23, 85–112.CrossRefGoogle Scholar
  4. 4.
    Whistler, R. L. and Daniel, J. R. (1984), in Starch: Chemistry and Function, 2nd ed., Whistler, R. L., BeMiller, J. N., and Paschall, E. F., eds., Academic Press, Orlando, pp. 153–182.Google Scholar
  5. 5.
    Imberty, A., Buleon, A., Tran, V., and Perez, S. (1991), Starch 43, 375–384.CrossRefGoogle Scholar
  6. 6.
    Stellwagen, N. C. (1987), in Adv. in Electrophoresis, vol. 1, Chrambach, A., Dunn, M. J., and Radola, B. J., eds., VCH, Weinheim, pp. 177–228.Google Scholar
  7. 7.
    Serwer, P. and Allen, J. L. (1984), Biochemistry 23, 922–927.CrossRefGoogle Scholar
  8. 8.
    Mickel, S., Arena, V., and Bauer, W. (1977), Nucleic Acids Res. 4, 1465–1482.CrossRefGoogle Scholar
  9. 9.
    Levene, S. D. and Zimm, B. H. (1987), Proc. Natl. Acad. Sci. USA 84, 4054–4057.CrossRefGoogle Scholar
  10. 10.
    Serwer, P. and Hayes, S. J. (1987), Electrophoresis 8, 244–246.CrossRefGoogle Scholar
  11. 11.
    Åkerman, B. (1998), Biophys. J. 74, 3140–3151.CrossRefGoogle Scholar
  12. 12.
    Cole, K. D. and Åkerman, B. (2000), BioMacromolecules 1, 771–781.CrossRefGoogle Scholar
  13. 13.
    Arnott, S., Fulmer, A., Scott, W. E., Dea, I. C. M., Moorhouse, R., and Rees, D. A. (1974), J. Mol. Biol. 90, 269–284.CrossRefGoogle Scholar
  14. 14.
    Kirkpatrick, F. H. (1990), in Electrophoresis of Large DNA Molecules: Theory and Applications, vol. 9, Lai, E. and Birren, B. W., eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 9–22.Google Scholar
  15. 15.
    Serwer, P. (1983), Electrophoresis 4, 375.CrossRefGoogle Scholar
  16. 16.
    Djabourov, M., Clark, A. H., Rowlands, D. W., and Ross-Murphy, S. B. (1989), Macromolecules 22, 180–188.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Kenneth D. Cole
    • 1
  • Carlos M. Tellez
    • 1
  • Richard Nguyen
    • 1
  1. 1.Bioprocess Engineering Group, Biotechnology DivisionNational Institute of Standards and TechnologyGaithersburg

Personalised recommendations