Skip to main content
Log in

Effect of two broad-spectrum antibiotics on activity and stability of continuous nitrifying system

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of two broad-spectrum antibiotics, chloramphenicol and oxytetracycline hydrochloride, on the microbial activity and biofilm stability of a mixed nitrifying culture were studied. These antibiotics are present in some wastewaters generated in cattle farms or pharmaceutical industries. A 1-L fermentor, in which nitrifiers grew both in suspension and in a biofilm, was used during the experiments. Chloramphenicol (10–250 mg/L) barely had any effect on biofilm stability and nitrification. Ammonia was fully oxidized to nitrate. However, oxytetracycline caused biofilm sloughing at concentrations of 10 mg/L, but nitrification was not inhibited at antibiotic concentrations up to 100 mg/L. When the concentration of oxytetracycline chlorohydrate was increased stepwise from 100 to 250 mg/L, nitrification was inhibited by 50%. The dissolved organic carbon measurements in both the influent and effluent showed that the antibiotics were neither mineralized by the mixed nitrifying culture nor accumulated in the system. Furthermore, the microbial tests did not reveal the presence of active antibiotics in the effluent. This fact indicates that both cloramphenicol and oxytetracycline were degraded by the nitrifying sludge but not mineralized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiesmann, U. (1994), in Advances in Biochemical Engineering, vol. 51, Fletcher A., ed., Springer Verlag, Berlin, pp. 99–108.

    Google Scholar 

  2. Kari, F. G., Eckhardt, A., and Holl, U. (1999), Gas, Wasser, Abwasser 79(6), 443–453.

    CAS  Google Scholar 

  3. Poels, J., van Assche, P., and Verstraete, W. (1984), Agric. Wastes 9, 239–247.

    Article  CAS  Google Scholar 

  4. Campubrí, M., París, J. M., and Casas, C. (1988), in Anaerobic Digestion, Hall, E. R. and Hobson, P. N., eds., Pergamon, Oxford, UK, pp. 329–348.

    Google Scholar 

  5. Sanz, J. L., Rodríguez, N., and Amils, R. (1993), Appl. Microbiol. Biotechnol. 46, 587–592.

    Article  Google Scholar 

  6. Zabranska, X., Jencek, P., and Dohanyos, M. (1994), Water Sci. Technol. 30(3), 103–107.

    CAS  Google Scholar 

  7. Hilpert, R., Winter, J., and Kandler, O. (1984), Agric. Wastes 10, 103–116.

    Article  CAS  Google Scholar 

  8. van de Graaf, A. A., Mulder, A., Jetten, M. S. M., Robertson, L. A., and Kuenen, J. G. (1995), Appl. Environ. Microbiol. 61, 1246–1251.

    Google Scholar 

  9. Gómez, J., Méndez, R., and Lema, J. M. (1996), Appl. Biochem. Biotechnol. 57–58, 869–876.

    Article  Google Scholar 

  10. Okpokwasili, G. C. and Eleke, F. N. (1997), J. Natl. Sci. Counc. Sri Lanka 25(4), 231–240.

    CAS  Google Scholar 

  11. Deng, L., Peng, Z., Tang, Y., and Huang, Z. (1998), Huanjing Kexue 19(6), 66–69.

    Google Scholar 

  12. Jiang, Y. and Hu, G. (1999), Taiyangneng Xuebao 20(2), 183–186.

    CAS  Google Scholar 

  13. Sharma, S., Ramakrishna, C., Desai, J. D., and Bhatt, N. M. (1994), Appl. Microbiol. Biotechnol. 40(5), 768–771.

    Article  CAS  Google Scholar 

  14. Vredenbregt, L. H. J., Nielsen, K., Potma, A. A., Kristensen, G. H., and Sund, C. (1997), Water Sci. Technol. 36(1), 93–100.

    Article  CAS  Google Scholar 

  15. Boot, T. R. (1992), in Biofilms—Science and Technology, Melo, L. F., Bott, T. R., Fletcher, M., et al., eds., Kluwer Academic, Dordrecht, The Netherlands, pp. 567–581.

    Google Scholar 

  16. Wobus, A. and Röske, I. (2000), Water Res. 34(1), 279–287.

    Article  CAS  Google Scholar 

  17. APHA-AWWA-WPCF, eds. (1985), Standard Methods for Examination of Water and Wastewater, 16th ed. Washington, DC.

  18. Vilas-Cruz, M., Gómez, G., Méndez, R., and Lema, J. M. (1994), in Proceedings of the III International Symposium of Analytical Methodology for the Environment, vol. 2, Barcelona, Spain, p. 50.

  19. The United States Pharmacopeia (1990), The National Formulary: NF XVII, 22nd ed., Board of Trustees, Rockville, MD.

    Google Scholar 

  20. Vishniac, W. and Santer, M. (1957), Bacteriol. Rev. 21, 199.

    Google Scholar 

  21. Brooks, M. H., Smith, R. L., and Macalady, D. L. (1992), Appl. Environ. Microbiol. 58, 1746–1753.

    CAS  Google Scholar 

  22. Lai, H., Liu, S. M., and Chien, Y. H. (1994), Abstr. Gen. Meet. Am. Soc. Microbiol., American Society for Microbiology, eds., Washington, DC, p. 464.

  23. Toro, C., Lobos, S., Calderón, Y., Rodríguez, M., and Mora, G. (1990), Antimicrob. Agents Chemother. 34(9), 1715–1719.

    CAS  Google Scholar 

  24. Davies, J. and Mazel, D. (1997), Biofutur 170, 14–17.

    Article  Google Scholar 

  25. Yamaguchi, A., Ohmori, H., Nomura, T., and Sawai, T. (1991), Agents Chemother. 35(1), 53–56.

    CAS  Google Scholar 

  26. Park, B. H. and Levy, S. B. (1988), Antimicrob. Agents Chemother. 32(12), 1797–1800.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luis Campos, J., Garrido, J.M., Méndez, R. et al. Effect of two broad-spectrum antibiotics on activity and stability of continuous nitrifying system. Appl Biochem Biotechnol 95, 1–10 (2001). https://doi.org/10.1385/ABAB:95:1:01

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:95:1:01

Index Entries

Navigation