Applied Biochemistry and Biotechnology

, Volume 94, Issue 3, pp 257–264 | Cite as

Optimization of inulinase production by Kluyveromyces marxianus using factorial design

  • Susana J. Kalil
  • Rodrigo Suzan
  • Francisco Maugeri
  • Maria I. Rodrigues


Factorial design and response surface techniques were used to optimize the culture medium for the production of inulinase by Kluyveromyces marxianus. Sucrose was used as the carbon source instead of inulin. Initially, a fractional factorial design (25–1) was used in order to determine the most relevant variables for enzyme production. Five parameters were studied (sucrose, peptone, yeast extract, pH, and K2HPO4), and all were shown to be significant. Sucrose concentration and pH had negative effects on inulinase production, whereas peptone, yeast extract, and K2HPO4 had positive ones. The pH was shown to be the most significant variable and should be preferentially maintained at 3.5. According to the results from the first factorial design, sucrose, peptone, and yeast extract concentrations were selected to be utilized in a full factorial design. The optimum conditions for a higher enzymatic activity were then determined: 14 g/L of sucrose, 10 g/L of yeast extract, 20 g/L of peptone, 1 g/L of K2HPO4. The enzymatic activity in the culture conditions was 127 U/mL, about six times higher than before the optimization.

Index Entries

Inulinase Kluyveromyces marxianus optimization factorial design and response surface analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vandamme, E. J. and Derycke, D. G. (1993), Adv. Appl. Microbiol. 29, 139–176.Google Scholar
  2. 2.
    Zittan, L. (1981), Starch 33, 373–377.CrossRefGoogle Scholar
  3. 3.
    Gupta, A. K., Davinder, P. S., Kaur, N., and Singh, R. (1994), J. Chem. Technol. Biotechnol. 59, 377–385.CrossRefGoogle Scholar
  4. 4.
    Kaur, N., Kaur, M., Gupta, A. K., and Singh, R. (1992), J. Chem. Technol. Biotechnol. 53, 279–284.CrossRefGoogle Scholar
  5. 5.
    Poorna, V. and Kulkarni, P. R. (1995), Bioresour. Technol. 54, 315–320.CrossRefGoogle Scholar
  6. 6.
    Nakamura, T., Shitara, A., Matsuda, S., Matsuo, T., Suiko, M., and Ohta, K. (1997), J. Ferment. Bioeng. 84, 313–318.CrossRefGoogle Scholar
  7. 7.
    Parekh, S. and Margaritis, A. (1986), Agric. Biol. Chem. 50, 1085–1087.Google Scholar
  8. 8.
    Guerrero, A. C., Pena, I. G., Barzana, E., Garibay, M. G., and Ruiz, L. G. (1995), J. Ferment. Bioeng. 80, 159–163.CrossRefGoogle Scholar
  9. 9.
    Selvakumar, P. and Pandey, A. (1999), Bioresour. Technol. 69, 123–127.CrossRefGoogle Scholar
  10. 10.
    Rouwenhorst, R. J., Hensing, M., Verbakel, J., Scheffers, W. A., and Van Dijken, J. P. (1990), Appl. Environ. Microbiol. 56, 3337–3345.Google Scholar
  11. 11.
    Kim, D. H., Choi, Y. J., Song, S. K., and Yun, J. W. (1997), Biotechnol. Lett. 19, 369–371.CrossRefGoogle Scholar
  12. 12.
    Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, John Wiley & Sons, New York.Google Scholar
  13. 13.
    Miller, G. L. (1959), Analyt. Chem. 31, 426–428.CrossRefGoogle Scholar
  14. 14.
    Vandamme, E. J. and Derycke, D. G. (1983), Adv. Appl. Microbiol. 29, 139–176.CrossRefGoogle Scholar
  15. 15.
    Pessoa, A., Jr., Hartmann, R., Vitolo, M., and Hustedt, H. (1996), J. Biotechnol. 51, 89–95.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Susana J. Kalil
    • 1
  • Rodrigo Suzan
    • 2
  • Francisco Maugeri
    • 2
  • Maria I. Rodrigues
    • 2
  1. 1.Department of ChemistryFundação Universidade do Rio GrandeRio Grande, RSBrazil
  2. 2.Department of Food EngineeringUNICAMP, CP 6121Campinas, SPBrazil

Personalised recommendations