Advertisement

Metabolic flux analysis of clostridium thermosuccinogenes

Effects of pH and Culture Redox Potential
  • Jayanth Sridhar
  • Mark A. Eiteman
Article

Abstract

Clostridium thermosuccinogenes are anaerobic thermophilic bacteria that ferment various carbohydrates to succinate and acetate as major products and formate, lactate, and ethanol as minor products. Metabolic carbon flux analysis was used to evaluate the effect of pH and redox potential on the batch fermentation of C. thermosuccinogenes. In a first study, the effects of four pH values (6.50, 6.75, 7.00, and 7.25) on intracellular carbon flux at a constant redox potential of −275 mV were compared. The flux of carbon toward succinate and formate increased whereas the flux to lactate decreased significantly with a pH increase from 6.50 to 7.25. Both specific growth rate and specific rate of glucose consumption were unaffected by changes in pH. The fraction of carbon flux at the phosphoenolpyruvate (PEP) node flowing to oxaloacetate increased with an increase in pH. At the pyruvate node, the fraction of flux to formate increased with increasing pH. At the acetyl CoA node, the fraction of flux to acetate increased significantly with an increase in pH. A second study elucidated the effect of four controlled culture redox potentials (−225, −250, −275, and −310 mV) on metabolic carbon flux at a constant pH of 7.25. Lower values of culture redox potential were correlated with increased succinate, acetate, and formate fluxes and decreased ethanol and hydrogen fluxes in C. thermosuccinogenes. Lactate formation was not significantly influenced by redox potential. At the PEP node, the fraction of carbon to oxaloacetate increased with a decrease in redox potential. At the pyruvate node, the fraction of carbon to formate increased, while at the acetyl CoA node, the fraction of carbon flux to acetate increased with reduced redox potential. The presence of hydrogen in the headspace or the addition of nicotinic acid to the growth media resulted in increased hydrogen and ethanol fluxes and decreased succinate, acetate, formate, and lactate fluxes.

Index Entries

Clostridium thermosuccinogenes anaerobic fermentation culture redox potential NADH metabolic flux organic acids 

References

  1. 1.
    Datta, R., Glassner, D. A., Jain, M. K., and Vick Roy, J. R. (1991), European patent 405,707.Google Scholar
  2. 2.
    Gokarn, R. R., Eiteman, M. A., and Sridhar, J. (1997), ACS Symp. Ser. 666, 237–253.CrossRefGoogle Scholar
  3. 3.
    Zeikus, J. G., Elankovan, P., and Grethlein, A. (1995), Chem. Proc. 58, 71–73.Google Scholar
  4. 4.
    Datta, R. (1989), US patent 4,885,247.Google Scholar
  5. 5.
    Glassner, D. A. (1989), European patent 389,103.Google Scholar
  6. 6.
    Glassner, D. A. and Datta, R. (1992), US patent 5,143,834.Google Scholar
  7. 7.
    Guettler, M. V., Jain, M. K., and Soni, B. K. (1996), US patent 5,504,004.Google Scholar
  8. 8.
    Drent, W. J., Lahpor, G. A., Wiegant, W. M., and Gottschal, J. C. (1991), Appl. Environ. Microbiol. 57, 455–462.Google Scholar
  9. 9.
    Montville, T. J., Parris, N., and Conway, L. K. (1985), Appl. Environ. Microbiol. 49, 733–736.Google Scholar
  10. 10.
    Samuelov, N. S., Lamed, R., Lowe, S., and Zeikus, J. G. (1991), Appl. Environ. Microbiol. 57, 3013–3019.Google Scholar
  11. 11.
    Shibai, H., Ishizak, A., Kobayshi, K., and Hirose, Y. (1974), Agric. Biol. Chem. 38, 2407–2411.Google Scholar
  12. 12.
    Jee, H. S., Mano, T., Nishio, N., and Nagai, S. (1987), J. Gen. Appl. Microbiol. 33, 401–408.Google Scholar
  13. 13.
    Jee, H. S., Mano, T., Nishio, N., and Nagai, S. (1988), J. Ferment. Technol. 66, 123–126.CrossRefGoogle Scholar
  14. 14.
    Kim, T. S. and Kim, B. H. (1988), Biotechnol. Lett. 10, 123–128.CrossRefGoogle Scholar
  15. 15.
    Aiba, S. and Matsuoka, M. (1979), Biotechnol. Bioeng. 21, 1373–1386.CrossRefGoogle Scholar
  16. 16.
    Chao, P.-Y., and Liao, J. C. (1993), Appl. Environ. Microbiol. 59, 4261–4265.Google Scholar
  17. 17.
    Diaz-Ricci, J. C., Tsu, M., and Bailey, J. E. (1992), Biotechnol. Bioeng. 38, 1318–1324.CrossRefGoogle Scholar
  18. 18.
    Goel, A., Ferrance, J., Jeong, J., and Ataai, M. M. (1993), Biotechnol. Bioeng. 42, 686–696.CrossRefGoogle Scholar
  19. 19.
    Vallino, J. J. and Stephanopoulos, G. (1993), Biotechnol. Bioeng. 41, 633–646.CrossRefGoogle Scholar
  20. 20.
    Reardon, K. F., Scheper, T., and Bailey, J. E. (1987), Biotechnol. Prog. 3, 153–167.Google Scholar
  21. 21.
    Abbad-Andaloussi, S., Durr, C., Raval, G., and Petitdemange, H. (1996), Microbiology 142, 1149–1158.CrossRefGoogle Scholar
  22. 22.
    Venkatesh, K. V. (1997), Proc. Biochem. 32, 651–655.CrossRefGoogle Scholar
  23. 23.
    Sridhar, J., Eiteman, M. A., and Wiegel, J. W. (2000), Appl. Environ. Microbiol. 66, 246–251.CrossRefGoogle Scholar
  24. 24.
    Sridhar, J. and Eiteman, M. A. (1999), Appl. Biochem. Biotechnol. 82, 91–101.CrossRefGoogle Scholar
  25. 25.
    Eiteman, M. A. and Chastain, M. J. (1997), Anal. Chim. Acta 338, 69–75.CrossRefGoogle Scholar
  26. 26.
    Ott, L. (1993), An Introduction to Statistical Methods and Data Analysis, 4th ed., Wadsworth, Belmont, CA.Google Scholar
  27. 27.
    Gottschalk, G. (1986), in Bacterial Metabolism, Springer-Verlag, New York, pp. 210–280.Google Scholar
  28. 28.
    Erickson, L. E. (1980), Biotechnol. Bioeng. 22, 451–456.CrossRefGoogle Scholar
  29. 29.
    Park, S. M., Sinskey, A. J., and Stephanopoulos, G. (1997), Biotechnol. Bioeng. 55, 864–879.CrossRefGoogle Scholar
  30. 30.
    Cook, G. M., Russell, J. B., Reichert, A., and Wiegel, J. (1996), Appl. Environ. Microbiol. 62, 4576–4579.Google Scholar
  31. 31.
    Cook, G. M., Janssen, P. H., and Morgan, H. W. (1993), Appl. Environ. Microbiol. 59, 2984–2990.Google Scholar
  32. 32.
    Stephanopoulos, G. N., Aristidou, A. A., and Nielson, J. (1998), Metabolic Engineering: Principles and Methodologies, Academic, New York.Google Scholar
  33. 33.
    Niedhardt, F. C., Ingraham, J. L., and Schaechter, M. (1990), Physiology of the Bacterial Cell: A Molecular Approach, Sinauer Associates, Sunderland, MA.Google Scholar
  34. 34.
    Tsai, S. P. and Lee, Y. H. (1988), Biotechnol. Bioeng. 32, 713–715.CrossRefGoogle Scholar
  35. 35.
    Peguin, S. and Soucaille, P. (1996), Biotechnol. Bioeng. 51, 342–348.CrossRefGoogle Scholar
  36. 36.
    Guedon, E., Payot, S., Desvaux, M., and Petitdemange, H. (1999), J. Bacteriol. 181, 3262–3269.Google Scholar
  37. 37.
    Alam, K. Y. and Clark, D. P. (1989), J. Bacteriol. 171, 6213–6217.Google Scholar
  38. 38.
    Leonardo, M. R., Dailly, Y., and Clark, D. P. (1996), J. Bacteriol. 178, 6013–6020.Google Scholar
  39. 39.
    Lovitt, R. W., Shen, G.-J., and Zeikus, J. G. (1988), J. Bacteriol. 170, 2809–2815.Google Scholar
  40. 40.
    Snoep, J. L., De Graef, M. R., Joost Teixeria De Mattos, M., and Neijssel, O. M. (1992), J. Gen. Microbiol. 138, 2015–2020.Google Scholar
  41. 41.
    London, J. and Knight, M. (1966), J. Gen. Microbiol. 44, 241–254.Google Scholar
  42. 42.
    Riebling, V., Thauer, R. K., and Jungermann, K. (1975), Eur. J. Biochem. 55, 445–453.CrossRefGoogle Scholar
  43. 43.
    Huang, L., Forsberg, C. W., and Gibbins, L. N. (1986), Appl. Environ. Microbiol. 51, 1230–1234.Google Scholar
  44. 44.
    Utter, M. F. and Kolenbrander, H. M. (1972), in The Enzymes, vol. 6, 3rd ed., Boyer, P. D., ed., Academic, New York, pp. 117–165.Google Scholar
  45. 45.
    Jones, R. P. and Greenfield, P. F. (1982), Enzyme Microbiol. Technol. 4, 210–223.CrossRefGoogle Scholar
  46. 46.
    Takai, K., Sako, Y., Uchida, A., and Ishida, Y. (1997), J. Biochem. 122, 32–40.Google Scholar
  47. 47.
    Turenen, M., Parkinnen, E., Londesborough, J., and Korhola, M. (1987), J. Gen. Microbiol. 133, 2865–2873.Google Scholar
  48. 48.
    Blackwood, A. C., Neish, A. C., and Ledingham, G. A. (1957), J. Bacteriol. 72, 497–499.Google Scholar
  49. 49.
    Snoep, J. L., Joost Teixeira de Mattos, M., Postma, P. W., and Niejssel, O. M. (1990), Arch. Microbiol. 154, 50–55.CrossRefGoogle Scholar
  50. 50.
    Thauer, R. K., Kichniawy, F. H., and Jungermann, K. A. (1972), Eur. J. Biochem. 27, 282–290.CrossRefGoogle Scholar
  51. 51.
    Klotzsch, H. R. (1969), Methods Enzymol. 13, 381–386.CrossRefGoogle Scholar
  52. 52.
    Diez-Gonzalez, F., Russell, J. B., and Hunter, J. B. (1997), Arch. Microbiol. 166, 418–420.CrossRefGoogle Scholar
  53. 53.
    Yan, R. and Chen, J. S. (1990), Appl. Environ. Microbiol. 56, 2591–2599.Google Scholar
  54. 54.
    Chen, J.-S. (1995), FEMS Microbiol. Rev. 17, 263–273.CrossRefGoogle Scholar
  55. 55.
    Millay, R. H. and Hersh, L. B. (1976), J. Biol. Chem. 251, 2754–2760.Google Scholar
  56. 56.
    Clark, D. P. (1989), FEMS Microbiol. Rev. 63, 223–234.CrossRefGoogle Scholar
  57. 57.
    Lindmark, D. G., Paolella, P., and Wood, N. P. (1969), J. Biol. Chem. 13, 3605–3612.Google Scholar
  58. 58.
    Vasconcelos, I., Girbal, L., and Soucaille, P. (1994), J. Bacteriol. 176, 1443–1450.Google Scholar
  59. 59.
    Baut, F., Fick, M., Viriot, M. L., Andre, J. C., and Engasser, J. M. (1994), Appl. Microbiol. Biotechnol. 41, 551–555.CrossRefGoogle Scholar
  60. 60.
    Garrigues, C., Loubiere, P., Lindley, N. D., and Cocaign-Bousquet, M. (1997), J. Bacteriol. 179, 5282–5287.Google Scholar
  61. 61.
    Girbal, L. and Soucaille, P. (1994), J. Bacteriol. 176, 6433–6438.Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  1. 1.Center for Molecular BioEngineering, Department of Biological and Agricultural EngineeringUniversity of GeorgiaAthens

Personalised recommendations