Skip to main content
Log in

Oxidative lime pretreatment of high-lignin biomass

Poplar wood and newspaper

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lime (Ca[OH]2) and oxygen (O2) were used to enhance the enzymatic digestibility of two kinds of high-lignin biomass: poplar wood and newspaper. The recommended pretreatment conditions for poplar wood are 150°C, 6 h, 0.1 g of Ca(OH)2/g of dry biomass, 9 mL of water/g of dry biomass, 14.0 bar absolute oxygen, and a particle size of −10 mesh. Under these conditions, the 3-d reducing sugar yield of poplar wood using a cellulase loading of 5 filter paper units (FPU)/g of raw dry biomass increased from 62 to 565 mg of eq. glucose/g of raw dry biomass, and the 3-d total sugar (glucose + xylose) conversion increased from 6 to 77% of raw total sugars. At high cellulase loadings (e.g., 75 FPU/g of raw dry biomass), the 3-d total sugar conversion reached 97%. In a trial run with newspaper, using conditions of 140°C, 3 h, 0.3 g of Ca(OH)2/g of dry biomass, 16 mL of water/g of dry biomass, and 7.1 bar absolute oxygen, the 3-d reducing sugar yield using a cellulase loading of 5 FPU/g of raw dry biomass increased from 240 to 565 mg of eq. glucose/g of raw dry biomass. A material balance study on poplar wood shows that oxidative lime pretreatment solubilized 38% of total biomass, including 78% of lignin and 49% of xylan; no glucan was removed. Ash increased because calcium was incorporated into biomass during the pretreatment. After oxidative lime pretreatment, about 21% of added lime could be recovered by CO2 carbonation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change (1996), in Climate Change 1995: The Science of Climate Change, Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K., eds., Cambridge University Press, Cambridge, UK, p. 5.

    Google Scholar 

  2. Thomson, D. J. (1997), Proc. Natl. Acad. Sci. USA 94, 8370–8377.

    Article  CAS  Google Scholar 

  3. Mitchell, J. F. B., Manabe, S., Meleshko, V., and Tokioka, T. (1990), in Climate Change: The IPCC Scientific Assessment, Houghton, J. T., Jenkins, G. J., and Ephraums, J. J., eds., Cambridge University Press, Cambridge, UK, pp. 131–172.

    Google Scholar 

  4. Klass, D. L. (1998), in Biomass for Renewable Energy, Fuels, and Chemicals, Academic, San Diego.

    Google Scholar 

  5. Holtzapple, M. T., Ross, M. K., Chang, N.-S., Chang, V. S., Adelson, S. K., and Brazel, C. (1997), in Fuels and Chemicals from Biomass, Saha, B. C. and Woodward, J., eds., American Chemical Society, Washington, DC, pp. 130–142.

    Google Scholar 

  6. Chang, V. S. and Holtzapple, M. T. (2000), Appl. Biochem. Biotechnol. 84–86, 5–37.

    Article  Google Scholar 

  7. Pew, J. C. (1957), Tappi 40(7), 553–558.

    CAS  Google Scholar 

  8. Pew, J. C. and Weyna, P. (1962), Tappi 45(3), 247–256.

    CAS  Google Scholar 

  9. Millett, M. A., Baker, A. J., Feist, W. C., Mellenberger, R. W., and Satter, L. D. (1970), J. Anim. Sci. 31(4), 781–788.

    CAS  Google Scholar 

  10. Moore, W. E., Effland, M. J., and Medeiros, J. E. (1972), J. Agric. Food Chem. 20(6), 1173–1175.

    Article  CAS  Google Scholar 

  11. Bender, F., Heaney, D. P., and Bowden, A. (1970), Forest Prod. J. 20(4), 36–44.

    CAS  Google Scholar 

  12. Grous, W. R., Converse, A. O., and Grethlein, H. E. (1986), Enzyme Microb. Technol. 8, 274–280.

    Article  CAS  Google Scholar 

  13. Brownell, H. H. and Saddler, J. N. (1987), Biotechnol. Bioeng. 29, 228–235.

    Article  CAS  Google Scholar 

  14. Hormeyer, H. F., Bonn, G., Kim, D. W., and Bobleter, O. (1987), J. Wood Chem. Technol. 7(2), 269–283.

    Article  Google Scholar 

  15. Grethlein, H. E. and Converse, A. O. (1991), Biores. Technol. 36, 77–82.

    Article  CAS  Google Scholar 

  16. van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal, M. J., Jr., and Lynd, L. R. (1996), Appl. Biochem. Biotechnol. 57/58, 157–170.

    Google Scholar 

  17. Wilson, R. K. and Pigden, W. J. (1964), Can. J. Anim. Sci. 44, 122, 123.

    CAS  Google Scholar 

  18. Feist, W. C., Baker, A. J., and Tarkow, H. (1970), J. Anim. Sci. 30, 832–835.

    CAS  Google Scholar 

  19. Huffman, J. G., Kitts, W. D., and Krishnamurti, C. R. (1971), Can. J. Anim. Sci. 51, 457–464.

    Article  CAS  Google Scholar 

  20. Mellenberger, R. W., Satter, L. D., Millett, M. A., and Baker, A. J. (1971), J. Anim. Sci. 32(4), 756–763.

    CAS  Google Scholar 

  21. Gharib, F. H., Meiske, J. C., Goodrich, R. D., and Serafy, A. M. (1975), J. Anim. Sci. 40(4), 734–742.

    CAS  Google Scholar 

  22. Chou, Y.-C. (1986), Biotechnol. Bioeng. Symp. 17, 19–31.

    CAS  Google Scholar 

  23. Pinto, J.-H. and Kamden, D. P. (1997), Appl. Biochem. Biotechnol. 61, 289–297.

    Google Scholar 

  24. Baker, A. J. and Millett, M. A. (1975), in Cellulose Technology Research, Turbak, A. F., ed., American Chemical Society, Washington, DC, pp. 75–103.

    Google Scholar 

  25. Knappert, D., Grethlein, H., and Converse, A. (1981), Biotechnol. Bioeng. 11, 67–77.

    CAS  Google Scholar 

  26. Grohmann, K., Torget, R., and Himmel, M. (1985), Biotechnol. Bioeng. Symp. 15, 59–80.

    Google Scholar 

  27. Hsu, T.-A., Himmel, M., Schell, D., Farmer, J., and Berggren, M. (1996), Appl. Biochem. Biotechnol. 57/58, 3–18.

    CAS  Google Scholar 

  28. Teixeira, L. C., Linden, J. C., and Schroeder, H. A. (1999), Appl. Biochem. Biotechnol. 77–79, 19–34.

    Article  Google Scholar 

  29. Chum, H. L., Johnson, D. K., Black, S., Grohmann, K., Sarkanen, K. V., Wallace, K., and Schroeder, H. A. (1988), Biotechnol. Bioeng. 31, 643–649.

    Article  CAS  Google Scholar 

  30. Kitsos, H. M., Roberts, R. S., and Muzzy, J. D. (1992), Biores. Technol. 39, 241–247.

    Article  CAS  Google Scholar 

  31. Kim, S. B. and Lee, Y. Y. (1996), Appl. Biochem. Biotechnol. 57/58, 147–156.

    Article  CAS  Google Scholar 

  32. Mandels, M., Hontz, L., and Nystron, J. (1974), Biotechnol. Bioeng. 16, 1471–1493.

    Article  CAS  Google Scholar 

  33. Tassinari, T. and Macy, C. (1977), Biotechnol. Bioeng. 22, 1321–1330.

    Article  Google Scholar 

  34. Millett, M. A., Effland, M. J., and Caulfield, F. (1979), in Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, Brown, R. D., Jr. and Jurasek, L., eds., American Chemical Society, Washington, DC, pp. 71–89.

    Google Scholar 

  35. Knappert, D., Grethlein, H., and Converse, A. (1980), Biotechnol. Bioeng. 22, 1449–1463.

    Article  CAS  Google Scholar 

  36. Holtzapple, M. T., Jun, J.-H., Ashok, G., Patibandla, S. L., and Dale, B. E. (1991), Appl. Biochem. Biotechnol. 28, 59–74.

    Google Scholar 

  37. Holtzapple, M. T., Lundeen, J. E., Sturgis, R., Lewis, J. E., and Dale, B. E. (1992), Appl. Biochem. Biotechnol. 34, 5–21.

    Google Scholar 

  38. Kim, J. S., Lee, Y. Y., and Park, S. C. (2000), Appl. Biochem. Biotechnol. 84–86, 129–139.

    Article  Google Scholar 

  39. Fan, L. T., Gharpuray, M. M., and Lee, Y.-H. (1987), Cellulose Hydrolysis, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  40. Chemical Market Reporter (2000), 257(23), Schnell, New York.

  41. Chang, V. S., Nagwani, M., and Holtzapple, M. T. (1998), Appl. Biochem. Biotechnol. 74, 135–159.

    CAS  Google Scholar 

  42. Ibrahim, M. N. M. and Pearce, G. R. (1983), Agric. Wastes 5, 135–156.

    Article  CAS  Google Scholar 

  43. Chang, V. S., Burr, B., and Holtzapple, M. T. (1997), Appl. Biochem. Biotechnol. 63–65, 3–19.

    Article  Google Scholar 

  44. Janshekar, H. and Fiechter, A. (1983), Adv. Biochem. Eng. 27, 119–178.

    CAS  Google Scholar 

  45. Chang, S. (1999), PhD thesis, Texas A&M University, College Station, TX.

    Google Scholar 

  46. Chemical Analysis & Testing Standard Procedure, National Renewable Energy Laboratory, Golden, CO.

  47. Miller, G. L. (1959), Anal. Chem. 31(3), 426–428.

    Article  CAS  Google Scholar 

  48. Krochta, J. M., Hudson, J. S., and Drake, C. W. (1984), Biotechnol. Bioeng. Symp. 14, 37–54.

    CAS  Google Scholar 

  49. Wilke, C. R. and Yang, R. D. (1975), Appl. Polymer Symp. 28, 175–188.

    CAS  Google Scholar 

  50. Rivers, D. B. and Emert, G. H. (1988), Biotechnol. Bioeng. 31, 278–281.

    Article  CAS  Google Scholar 

  51. Schwald, W., Breuil, C., Brownell, H. H., Chan, M., and Saddler, J. N. (1989), Appl. Biochem. Biotechnol. 20/21, 29–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Holtzapple.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, V.S., Nagwani, M., Kim, CH. et al. Oxidative lime pretreatment of high-lignin biomass. Appl Biochem Biotechnol 94, 1–28 (2001). https://doi.org/10.1385/ABAB:94:1:01

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:94:1:01

Index Entries

Navigation