Advertisement

Applied Biochemistry and Biotechnology

, Volume 91, Issue 1–9, pp 297–309 | Cite as

Cellulase recovery via membrane filtration

  • Wendy D. Mores
  • Jeffrey S. Knutsen
  • Robert H. Davis
Article

Abstract

A combined sedimentation and membrane filtration process was investigated for recycling cellulase enzymes in the biomass-to-ethanol process. In the first stage, lignocellulose particles longer than approx 50 μm were removed by means of sedimentation in an inclined settler. Microfiltration was then utilized to remove the remaining suspended solids. Finally, the soluble cellulase enzymes were recovered by ultrafiltration. The perm eate fluxes obtained in microfiltration and ultrafiltration were approx 400 and 80 L/(m2·h), respectively. A preliminary economic analysis shows that the cost benefit of enzyme recycling may be as much as 18 cents/gal of ethanol produced, provided that 75% of the enzyme is recycled in active form.

Index Entries

Sedimentation microfiltration ultrafiltration cellulase enzyme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lynd, L. R., Wyman, C. E., and Gerngross, T. U. (1999), Biotechnol. Prog. 15, 777–793.CrossRefGoogle Scholar
  2. 2.
    McCoy, M. (1998), C&EN 12, 29–32.Google Scholar
  3. 3.
    Lee, J. (1997), J. Biotechnol. 56, 1–24.CrossRefGoogle Scholar
  4. 4.
    Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majdeski, H., and Galvez, A. (1999), NREL/TP-580-26157. National Technical Information Service, Springfield, VA.Google Scholar
  5. 5.
    Nguyen, O. A., Keller, F. A., Tucker, M. P., et al. (1999), Appl. Biochem. Biotechnol. 77/79, 455–472.CrossRefGoogle Scholar
  6. 6.
    Hill, W. D., Rothfus, R. R., and Li, K. (1977), Int. J. Multiphase Flow 3, 561–583.CrossRefGoogle Scholar
  7. 7.
    Acrivos, A. and Herbolzheimer, E. (1979), J. Fluid Mech. 92, 435–457.CrossRefGoogle Scholar
  8. 8.
    Davis, R. H. and Gecol, H. (1996), Int. J. Multiphase Flow 22, 563–574.CrossRefGoogle Scholar
  9. 9.
    Davis, R. H. and Acrivos, A. (1985), Annu Rev. Fluid Mech. 17, 91–118.CrossRefGoogle Scholar
  10. 10.
    Kroner, K. H., Schutte, H., Hustedt, H., and Kula, M. R. (1984), Process Biochem. April, 67–74.Google Scholar
  11. 11.
    Davis, R. H., Zhang, X., and Agarwala, J. P. (1989), Ind. Eng. Chem. Res. 28, 785–793.CrossRefGoogle Scholar
  12. 12.
    Kuberkar, V. T. and Davis, R. H. (2000), J. Membr. Sci. 168, 245–260.CrossRefGoogle Scholar
  13. 13.
    Kuberkar, V. T., Czekaj, P., and Davis, R. H. (1998), Biotech. Bioeng 60, 70–87.CrossRefGoogle Scholar
  14. 14.
    Roseiro, J. C., Conceição, A. C., and Amaral-Collaço, M. T. (1993) Bioresour. Technol. 43, 155–160.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Wendy D. Mores
    • 1
  • Jeffrey S. Knutsen
    • 1
  • Robert H. Davis
    • 1
  1. 1.Department of Chemical EngineeringUniversity of ColoradoBoulder

Personalised recommendations