Applied Biochemistry and Biotechnology

, Volume 90, Issue 3, pp 251–259 | Cite as

Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass

  • Masahiro KurakakeEmail author
  • Wataru Kisaka
  • Kazuya Ouchi
  • Toshiaki Komaki


Bagasse, corn husk, and switchgrass were pretreated with ammonia water to enhance enzymatic hydrolysis. The sample (2 g) was mixed with 1–6 mL ammonia water (25–28% ammonia) and autoclaved at 120°C for 20 min. After treatment, the product was vacuum-dried to remove ammonia gas. The dried solid could be used immediately in the enzymatic hydrolysis without washing. The enzymatic hydrolysis was effectively improved with more than 0.5 and 1 mL ammonia water/g for corn husk and bagasse, respectively. In bagasse, glucose, xylose, and xylobiose were the main products. The adsorption of CMCase and xylanase was related to the initial rate of enzymatic hydrolysis. In corn husks, arabinoxylan extracted by pretreatment was substantially unhydrolyzed because of the high ratio of arabinose to xylose (0.6). The carbohydrate yields from cellulose and hemicellulose were 72.9% and 82.4% in bagasse, and 86.2% and 91.9% in corn husk, respectively. The ammonia/water pretreatment also benefited from switchgrass (Miscanthus sinensis and Solidago altissima L.) hydrolysis.

Index Entries

Corn husk bagasse switchgrass pretreatment ammonia water cellulase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Puls, J., Poutanen, K., Korner, H. U., and Viikari, L. (1985), Appl. Microbiol. Biotechnol. 22, 416–423.CrossRefGoogle Scholar
  2. 2.
    Saha, B. C., Dien, B. S., and Bothast, R. J. (1998), Appl. Biochem. Biotechnol. 70–72, 115–125.Google Scholar
  3. 3.
    Alive, L. A., Filipe, M. G. A., Silva, J. B. A. E., Silva, S. S., and Prata, A. M. R. (1998), Appl. Biochem. Biotechnol. 70–72, 89–98.Google Scholar
  4. 4.
    Dominguez, J. M., Gong, C. S., and Tsao, G. T. (1996), Appl. Biochem. Biotechnol. 57/58, 49–56.Google Scholar
  5. 5.
    Lyer, P. V., Wu, Z. W., Kim, S. B., and Lee, Y. Y. (1996), Appl. Biochem. Biotechnol. 57/58, 121–132.Google Scholar
  6. 6.
    Torget, R., Hatzis, C., Hayward, T. K., Hsu, T. A., and Philippidis, G. P. (1996), Appl. Biochem. Biotechnol. 57/58, 85–101.Google Scholar
  7. 7.
    Branka, B., Costas, G. B., Donald, M., and Alexander, W. M. (1991), J. Sci. Food Agric. 56, 195–214.CrossRefGoogle Scholar
  8. 8.
    Carrasco, J. E., Navarro, M. C. S. A., Saez, P. S. F., and Martinez, J. M. (1994), Appl. Biochem. Biotechnol. 45/46, 23–34.CrossRefGoogle Scholar
  9. 9.
    Chang, V. S., Burr, B., and Holtzapple, M. T. (1997), Appl. Biochem. Biotechnol. 63–65, 3–19.Google Scholar
  10. 10.
    Wang, L., Dale, B. E., Yurttas, L., and Goldwasser, I. (1998), Appl. Biochem. Biotechnol. 70–72, 51–66.Google Scholar
  11. 11.
    Miller, G. L. (1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  12. 12.
    Ooshima, H., Kurakake, M., Kato, J., and Harano, Y. (1992), Appl. Biochem. Biotechnol. 37, 165–176.CrossRefGoogle Scholar
  13. 13.
    Kurakake, M., Ooshima, H., Kato, J., and Harano, Y. (1994), Bioresource Technology 49, 247–251.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Masahiro Kurakake
    • 1
    Email author
  • Wataru Kisaka
    • 1
  • Kazuya Ouchi
    • 1
  • Toshiaki Komaki
    • 1
  1. 1.Department of Food Science and TechnologyFukuyama UniversityHiroshimaJapan

Personalised recommendations