Advertisement

Applied Biochemistry and Biotechnology

, Volume 90, Issue 3, pp 233–249 | Cite as

Cooperativity and substrate specificity of an alkaline amylase and neopullulanase complex of Micrococcus halobius OR-1

  • Kamakshi P. Rajdevi
  • Ganesa YogeeswaranEmail author
Article

Abstract

The saccharifying alkaline amylase and neopullulanase complex of Micrococcus halobius OR-1 hydrolyzes both α-(1,4)- and α-(1,6)-glycosidic linkages of different linear and branched polysaccharides. The following observations were made concerning the analysis of the coexpressed amylase and neopullulanase enzymes. Even though the enzymes were subjected to a rigorous purification protocol, the activities could not be separated, because both the enzymes were found to migrate in a single peak. By contrast, two independent bands of amylolytic activity at 70 kDa and pullulanolytic activity at 53 kDa were evident by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), reducing and nonreducing PAGE, and zymographic analysis on different polysaccharides. Preferential chemical modification of the enzyme and concomitant high-performance thin-layer chromatographic analyses of the saccharides liberated showed that amylase is sensitive to 1-(dimethylamino-propyl)-3-ethyl carbodiimide-HCl and cleaved α-(1,4) linkages of starch, amylose, and amylopectin producing predominantly maltotriose. On the other hand, formalin-sensitive neopullulanase acts on both α-(1,4) and α-(1,6) linkages of pullulan and starch with maltotriose and panose as major products. It is understood that neopullulanase exhibits dual activity and acts in synergy with amylase toward the hydrolysis of α-(1,4) linkages, thereby increasing the overall reaction rate; however, such a synergism is not seen in zymograms, in which the enzymes are physically separated during electrophoresis. It is presumed that SDS-protein intercalation dissociated the enzyme complex, without altering the individual active site architecture, with only the synergism lost. The optimum temperature and pH of amylase and neopullulanase were 60°C and 8.0, respectively. The enzymes were found stable in high alkaline pH for 24 h. Therefore, the saccharifying alkaline amylase and neopullulanase of M. halobius OR-1 evolved from tapioca cultivar shows a highly active and unique enzyme complex with several valuable biochemical features.

Index Entries

Micrococcus substrate specificity amylase neopullulanase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Juge, N., Svensson, B., and Willianson, G. (1998), Appl. Microbiol. Biotechnol. 49, 385–392.CrossRefGoogle Scholar
  2. 2.
    Cornelis, P. (1987), Microbiol. Sci. 4, 342, 343.Google Scholar
  3. 3.
    Norman, B. E. (1982), Starch-Starke 10, 340–346.CrossRefGoogle Scholar
  4. 4.
    Plant, A. R., Clemend, R. M., Morgan, H. W., and Daniel, R. M. (1987), Biochem. J. 246, 537–541.Google Scholar
  5. 5.
    Kim, C. H. (1994), FEMS Microbiol. Lett. 116, 327–332.CrossRefGoogle Scholar
  6. 6.
    Lee, Y. E., Jain, M. K., Lee, C., Lowe, S. E., and Zeikus, J. G. (1993), Int. J. Syst. Bacteriol. 43, 41–51.CrossRefGoogle Scholar
  7. 7.
    Mathubala, S. P., Lowe, S. E., Podkovyrov, S. M., and Zeikus, J. G. (1993), J. Biol. Chem. 268, 16,332–16,344.Google Scholar
  8. 8.
    Sata, H., Umeda, M., Kim, C. H., Taniguchi, H., and Maruyama, Y. (1989), Biochim. Biophys. Acta 991, 388–394.Google Scholar
  9. 9.
    Kuriki, T., Okada, S., and Imanaka, T. (1988), J. Bacteriol. 170, 1554–1559.Google Scholar
  10. 10.
    Imanaka, T. and Kuriki, T. (1989), J. Bacteriol. 171, 369–374.Google Scholar
  11. 11.
    Lee, C., Saha, B. C., and Zeikus, J. G. (1990), Appl. Environ. Microbiol. 56, 2895–2901.Google Scholar
  12. 12.
    RajDevi, K. P. and Yogeeswaran, G. (1999), World J. Microbiol. Biotechnol. 15(2), 223–227.CrossRefGoogle Scholar
  13. 13.
    Somogyi, M. (1952), J. Biol. Chem. 195, 19–23.Google Scholar
  14. 14.
    Bradford, M. M. (1976), Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  15. 15.
    Rylatt, D. B. and Parish, C. R. (1982), Anal. Biochem. 121, 213, 214.CrossRefGoogle Scholar
  16. 16.
    Gupta, K. C., Sahni, M. K., and Rathore, B. S. (1989), J. Chromatogr. 169, 183.CrossRefGoogle Scholar
  17. 17.
    Sundberg, L. and Porath, J. (1974), J. Chromatogr. 40, 87–98.CrossRefGoogle Scholar
  18. 18.
    Laemmli, U. K. (1970), Nature 227, 680–685.CrossRefGoogle Scholar
  19. 19.
    Fairbanks, G., Steck, T. L., and Wallach, D. F. H. (1971), Biochemistry 10, 2606–2617.CrossRefGoogle Scholar
  20. 20.
    Mathubala, P. S. and Zeikus, J. G. (1993), Appl. Microbiol. Biotechnol. 487–493.Google Scholar
  21. 21.
    Carraway, K. L. and Koshland, D. E. (1972), Methods Enzymol. 25, 616–623.Google Scholar
  22. 22.
    Boopathy, R. and Balasubramanian, A. S. (1985), Eur. J. Biochem. 151, 351–360.CrossRefGoogle Scholar
  23. 23.
    Itkor, P., Tsukagoshi, N., and Udaka, S. (1989), J. Ferment. Bioeng. 68, 247–251.CrossRefGoogle Scholar
  24. 24.
    Ara, K., Igarashi, K., Saeki, K., and Ito, S. (1995), Biosci. Biotechnol. Biochem. 59, 662–666.CrossRefGoogle Scholar
  25. 25.
    Bender, H. and Wallenfels, K. (1966), Methods Enzymol. 8, 555–562.CrossRefGoogle Scholar
  26. 26.
    Takata, H., Kuriki, T., Okada, S., Takesada, Y., Iizuka, M., Minamiura, N., and Imanaka, T. (1992), J. Biol. Chem. 267, 18,447–18,452.Google Scholar
  27. 27.
    Kim, C. H., Choi, H. I., and Lee, D. S. (1993) J. Ind. Microbiol. 12, 48–57.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  1. 1.Division of Medical Biotechnology, Research and DevelopmentTamilnad Hospitals Academic Trust-Research Council, Cheran NagarPerumbakkamIndia

Personalised recommendations