Applied Biochemistry and Biotechnology

, Volume 90, Issue 1, pp 47–55 | Cite as

Comparative studies on a mesophilic and a thermophilic α-amylase



A comparative study was performed on thermal stability of mesophilic and thermophilic α-amylases, and the effects of various denaturing agents, organic solvents, and stabilizers were investigated. As expected, the thermophilic enzyme showed higher resistance toward denaturation in water as its natural medium, but such a difference could not be detected in nonaqueous environments. Furthermore, stability of these molecules was improved by including various stabilizing agents. Of the compounds tested, sorbitol provided the highest degree of protection, which was found to be owing to its effect on increasing T m and its ability in totally preventing deamidation of amino acid residues in the protein molecules.

Index Entries

α-Amylase thermostability deamidation organic solvent thermostabilizing additives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richards, F. M. (1997), Cell Mol. Life Sci. 53, 790–802.CrossRefGoogle Scholar
  2. 2.
    Janecek, S. (1993), Process Biochem. 28, 435–445.CrossRefGoogle Scholar
  3. 3.
    Fagain, C. and O’Kennedy, R. (1991), Biotechnol. Adv. 9, 351–409.CrossRefGoogle Scholar
  4. 4.
    Matthews, B. W. (1995), Adv. Protein Chem. 46, 249–278.Google Scholar
  5. 5.
    Pace, C. N., Shirley, B. A., Mcnutt, M., and Gajiwala, K. (1996), FASEB J. 10, 75–83.Google Scholar
  6. 6.
    Klibanov, A. M. (1989), Trends Biochem. Sci. 14, 141–149.CrossRefGoogle Scholar
  7. 7.
    Zaks, A. and Klibanov, A. M. (1984), Science 224, 1249–1251.CrossRefGoogle Scholar
  8. 8.
    Tomazic, S. J. and Klibanov, A. M. (1988), J. Biol. Chem. 263, 3086–3091.Google Scholar
  9. 9.
    Tomazic, S. J. and Klibanov, A. M. (1988), J. Biol. Chem. 263, 3092–3096.Google Scholar
  10. 10.
    Imoto, T. (1997), Cell Mol. Life Sci. 53, 215–223.CrossRefGoogle Scholar
  11. 11.
    Vieille, C., Burdette, D. S., and Zeikus, J. G. (1996), Biotechnol. Annu. Rev. 2, 1–79.CrossRefGoogle Scholar
  12. 12.
    Ludlow, J. M. and Clark, D. S. (1991), CRC Crit. Rev. Biotechnol. 10, 321–345.CrossRefGoogle Scholar
  13. 13.
    Clark, D. and Kelly, R. (1990), Chemtech 20, 654–662.Google Scholar
  14. 14.
    Asther, M. and Meunier, J. C. (1990), Enzyme. Microb. Technol. 12, 902–905.CrossRefGoogle Scholar
  15. 15.
    Tomizawa, H., Yamada, H., Wada, K., and Imoto, T. (1995), J. Biochem. 117, 635–640.Google Scholar
  16. 16.
    Tomizawa, H., Yamada, H., Tanigawa, K., and Imoto, T. (1995), J. Biochem. 117, 369–373.Google Scholar
  17. 17.
    Tomizawa, H., Yamada, H., and Imoto, T. (1994), Biochemistry 33, 13,032–13,037.Google Scholar
  18. 18.
    Klibanov, A. M. and Zaks, A. (1998), J. Biol. Chem. 263, 3194–3199.Google Scholar
  19. 19.
    Resslow, M., Adlerereutz, P., and Mattiasson, P. (1987), Appl. Microbiol. Biotechnol. 26, 1–6.CrossRefGoogle Scholar
  20. 20.
    Gorse-Ramos, G., Darszon, A., Tuenada Gomez-Puyon, M., and Gomez-Puyon, A. (1989), Biochemistry 28, 3177–3203.CrossRefGoogle Scholar
  21. 21.
    Bernfeld, P. (1995), in Methods in Enzymology, vol. 1, Collowick, S. P. and Kaplan, N. O., eds., Academic, New York, p. 149.Google Scholar
  22. 22.
    Kun, E. and Kearney, E. B. (1974), in Methods of Enzymatic Analysis, 2nd ed., vol. 4, Bergmeyer, H. U., ed., Academic, New York, pp. 1802–1806.Google Scholar
  23. 23.
    Machius, M., Wiegand, G., and Huber, R. (1995), J. Mol. Biol. 246, 545–559.CrossRefGoogle Scholar
  24. 24.
    Thannhauser, T. W. and Scheraga, H. A. (1985), Biochemistry 24, 7681–7688.CrossRefGoogle Scholar
  25. 25.
    Tyler-Cross, R. and Schirch, V. J. (1991), J. Biol. Chem. 265, 22,549–22,556.Google Scholar
  26. 26.
    Wright, H. T. (1991), Protein Eng. 4, 283–294.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  1. 1.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran

Personalised recommendations