Advertisement

Applied Biochemistry and Biotechnology

, Volume 88, Issue 1–3, pp 257–265 | Cite as

Preparation of γ-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase

  • A. Yu. Plokhov
  • M. M. Gusyatiner
  • T. A. Yampolskaya
  • V. E. Kaluzhsky
  • B. S. Sukhareva
  • A. A. Schulga
Article

Abstract

γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter synthesized in the central nervous system from glutamate by glutamate decarboxylase (GAD). It has applications in the production of many drugs. The technology of GABA synthesis by treating L-glutamic acid with the cells of the gene-engineered GAD superproducer strain of Escherichia coli GAD K10 was developed. Cell growing in the presence of 0.02 mM pyridoxal phosphate (PLP) causes the 2- to 2.5-fold increase of total productivity of the cells. The best way to prepare the cells for the reaction was their thermal activation by pretreatment for 1 h at 53°C. The optimal conditions for this reaction were 37°C and pH 4.6. The rate of the enzymatic reaction is the function of acetate concentration with the maximum at 0.5 M acetate. The total amount of GABA synthesized using 1 g of wet cells reached 23–25 g. The final concentration of GABA in the reaction medium was 280–300 g/L. The yield of the product was about 99%.

Index Entries

γ-Am inobutyric acid glutamate decarboxylase Escherichia coli pyridoxal 5-phosphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sytinsky, I. A. (1972), γ-Aminobutyric Acid and Activity of the Central Nervous System, Leningrad, Nauka.Google Scholar
  2. 2.
    Krnjevic, K. (1974), Physiol. Rev. 54, 418–540.Google Scholar
  3. 3.
    Roberts, E. (1974), Biochem. Pharm. 23, 2637–2649.CrossRefGoogle Scholar
  4. 4.
    Camien, M. N., Mc Clure, L. E., Lepp, A., and Dunn, M. S. (1953), Arch. Biochem. Biophys. 43, 378–380.CrossRefGoogle Scholar
  5. 5.
    Gubarev, E. M., and Galaev, Yu. V. (1960), Biokhimiya (Moscow) 25, 261–263.Google Scholar
  6. 6.
    Schulga, A. A., Kurbanov, F. T., Khristoforov, R. R., Darii, E. L., and Sukhareva, B. S. (1999), Mol. Biol. (Moscow) 33, 560–566.Google Scholar
  7. 7.
    Bradford, M. (1976), Anal. Biochem. 72, 248.CrossRefGoogle Scholar
  8. 8.
    Erdman, I. E., Nys, P. S., and Biryukov, V. V. (1986), Antibiotics Med. Biotechnol. 4, 249–254.Google Scholar
  9. 9.
    Sukhareva, B. S., and Braunstein, A. E. (1971), Mol. Biol. 5, 302–317.Google Scholar
  10. 10.
    Strausbauch, P. N. and Fisher, E. (1970), Biochemistry 9, 226–233.CrossRefGoogle Scholar
  11. 11.
    Shukuya, R. and Schwert, G. W. (1960), J. Biol. Chem. 235, 123–126.Google Scholar
  12. 12.
    Fonda, M. L. (1972), Arch. Biochem. Biophys. 153, 763–768.CrossRefGoogle Scholar
  13. 13.
    Lambrecht, R. H. D., Slegers, G., Mannens, G., and Claes A. (1987), Enzyme Microb. Technol. 9, 221–224.CrossRefGoogle Scholar
  14. 14.
    Khristoforov, R. R., Sukhareva, B. S., Dixon, H. B. F., Sparkes, M. J., Krasnov, V. P. and Bukrina, I. M. (1995), Biochem. Mol. Biol. Intern. 36, 77–85.Google Scholar
  15. 15.
    De Biase, D., Tramonti, A., John, A. R., and Bossa, F. (1996), prot. Expr. Purif. 8, 430–438.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • A. Yu. Plokhov
    • 1
  • M. M. Gusyatiner
    • 2
  • T. A. Yampolskaya
    • 2
  • V. E. Kaluzhsky
    • 1
  • B. S. Sukhareva
    • 3
  • A. A. Schulga
    • 3
  1. 1.Mosagrogen Joint-Stock CompanyMoscowRussia
  2. 2.State Research Institute of Genetics and Selection of Industrial MicroorganismsMoscowRussia
  3. 3.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations