Advertisement

Applied Biochemistry and Biotechnology

, Volume 87, Issue 3, pp 165–175 | Cite as

Amiodarone interactions with membrane lipids and with growth of Bacillus stearothermophilus used as a model

  • Sónia M. L. J. Rosa
  • Maria C. Antunes-Madeira
  • Amália S. Jurado
  • Vítor V. M. C. Madeira
Article

Abstract

The thermophilic eubacterium Bacillus stearothermophilus was used as a model to study the effects of amiodarone (2-butyl-3-[3′,5′diido-4′α-diethyl-aminoethoxybenzoyl]-benzofuran) in lipid organization and in bacterial growth. Effects on the structural order of lipids were assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), probing the bilayer core, and of the propionic acid derivative 3-[p-(6-phenyl)-1,3,5-hexatrienyl] phenylpropionic acid (DPH-PA), probing the outer regions of the bilayer. Amiodarone fluidizes bacterial polar lipid bilayers for temperatures below the phase transition midpoint, and orders the fluid phase of the bacterial polar lipids, as evaluated by DPH and DPH-PA. The ordering and disordering effects, which are concentration dependent, are more extensive when detected by DPH relative to DPH-PA. Growth studies performed in parallel revealed that amiodarone inhibits bacterial growth as a function of concentration. Amiodarone concentrations in the range from 1 to 2.5 µM increased the lag time, decreased the specific growth rate, and decreased the final cell density. Furthermore, 3 µM amiodarone completely inhibited growth. These in vivo effects of amiodarone can be related to its ability to perturb the phospholipid bilayer structure, whose integrity is essential for cell function, viability, and growth.

Index Entries

Amiodarone Bacillus stearothermophilus fluorescent probes membrane organization bacterial growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenbourn, M. B., Chiale, P. A., Halpern, M. S., Nau, G. J., Przybylzky, J., Levi, R. J., Lazzari, J. O., and Elizari, M. V. (1976), Am. J. Cardiol. 38, 934–944.CrossRefGoogle Scholar
  2. 2.
    Gill, J., Heel, R. C., and Fitton, A. (1992), Drugs 43, 69–110.Google Scholar
  3. 3.
    Jendrasiak, G. L., McIntosh, T. J., Ribeiro, A., and Porter, R. S. (1990), Biochim. Biophys. Acta 1024, 19–31.CrossRefGoogle Scholar
  4. 4.
    Trumbore, M., Chester, D. W., Moring, J., Rhodes, D., and Herbette, L. G. (1988), Biophys. J. 54, 535–543.Google Scholar
  5. 5.
    Chatelain, P., Ferreira, J., Laruel, R., and Ruysschaert, J. M. (1986), Biochem. Pharmacol. 35, 3007–3013.CrossRefGoogle Scholar
  6. 6.
    Chatelain P., Brottelle, R., and Laruel, R. (1987), Biochem. Pharmacol. 36, 1564, 1565.CrossRefGoogle Scholar
  7. 7.
    Sautereau, A.-M., Tournaire, C., Suares, M., Tocanne, J. F., and Paillous, N. (1992), Biochem. Pharmacol. 43, 2559–2566.CrossRefGoogle Scholar
  8. 8.
    Antunes-Madeira, M. C., Videira, R. A., Klüppel, M. L. W., and Madeira, V. M. C. (1995), Int. J. Cardiol. 48, 211–218.CrossRefGoogle Scholar
  9. 9.
    Attal, Y., Cao, X. A., Perret, G., and Taillandier, E. (1997), Chem. Pharm. Bull. 45, 1317–1322.Google Scholar
  10. 10.
    Chatelain, P., Laruel, R., and Gillard, M. (1985), Biochem. Biophys. Res. Commun. 129, 148–154.CrossRefGoogle Scholar
  11. 11.
    Chatelain, P., Laruel, R., Vic, P., and Brotelle, R. (1989), Biochem. Pharmacol. 38, 1231–1239.CrossRefGoogle Scholar
  12. 12.
    Nishimura, M., Follmer, C. H., and Singer, D. H. (1989), J. Pharmacol. Exp. Ther. 251, 650–659.Google Scholar
  13. 13.
    Fromenty, B., Fish, C., Berson, A., Letteron, P., Larrey, D., and Pessayre, D. (1990), J. Pharmacol. Exp. Ther. 255, 1377–1384.Google Scholar
  14. 14.
    Watanase, Y., Hara, Y., Tamagawa, M., and Nakaya, H. (1996), J. Pharmacol. Exp. Ther. 279, 617–624.Google Scholar
  15. 15.
    Card, J. W., Lalonde, B. L., Rafeiro, F., Tam, A. S., Racs, W. J., Brien, J. F., Bray, T. M., and Massey, T. E. (1998), Toxicol. Lett. 98, 41–50.CrossRefGoogle Scholar
  16. 16.
    Gray, D. F., Mihailidon, A. S., Hansen, P. S., Buhagiar, K. A., Bewick, N. L., Rasmussen, H. H., and Wholley, D. W. (1998), J. Pharmacol. Exp. Ther. 284, 75–82.Google Scholar
  17. 17.
    Silva, M. T., Sousa, J. C. F., Polónia, J. J., and Macedo, P. M. (1979), Y. Bacteriol. 137, 461–468.Google Scholar
  18. 18.
    Sikkema, J., Poolman, B., Konings, W. N., and De Bont, J. A. M. (1992), J. Bacteriol. 174, 2986–2992.Google Scholar
  19. 19.
    Sikkema, J., De Bont, J. A. M., and Poolman, B. (1995), Microbiol. Rev. 59, 201–222.Google Scholar
  20. 20.
    Luxo, C., Jurado, A. S., Custódio, J. B. A., and Madeira, V. M. C. (1996), Toxicol. Vitro 10, 463–471.CrossRefGoogle Scholar
  21. 21.
    Luxo, C., Jurado, A. S., and Madeira, V. M. C. (1998), Biochim. Biophys. Acta 1369, 71–84.CrossRefGoogle Scholar
  22. 22.
    Donato, M. M., Jurado, A. S., Antunes-Madeira, M. C., and Madeira, V. M. C. (1997), Arch. Environ. Contam. Toxicol. 33, 109–116.CrossRefGoogle Scholar
  23. 23.
    Donato, M. M., Jurado, A. S., Antunes-Madeira, M. C., and Madeira, V. M. C. (1997), Arch. Environ. Contam. Toxicol. 33, 341–349.CrossRefGoogle Scholar
  24. 24.
    Donato, M. M., Jurado, A. S., Antunes-Madeira, M. C., and Madeira, V. M. C. (1997), Appl. Environ. Microbiol. 63, 4948–4951.Google Scholar
  25. 25.
    Kaback, H. R. (1972), Biochim. Biophys. Acta 265, 367–416.Google Scholar
  26. 26.
    Booth, I. R. (1985), Microbiol. Rev. 49, 359–378.Google Scholar
  27. 27.
    Stock, J. B., Stock, A. M., and Mottonen, J. M. (1990), Nature 344, 395–400.CrossRefGoogle Scholar
  28. 28.
    Trumpower, B. L. and Gennis, R. B. (1994), Annu. Rev. Biochem. 63, 675–716.Google Scholar
  29. 29.
    Jurado, A. S., Santana, A. C., Costa, M. S., and Madeira, V. M. C. (1987), J. Gen. Microbiol. 133, 507–513.Google Scholar
  30. 30.
    Bligh, E. G. and Dyer, W. J. (1959), Can. J. Biochem. Physiol. 37, 911–937.Google Scholar
  31. 31.
    Bartlett, G. R. (1959), J. Biol. Chem. 234, 466–468.Google Scholar
  32. 32.
    Böttcher, C. J. F., Van Gent, C. M., and Pries, C. (1961), Anal. Chim. Acta 24, 203, 204.CrossRefGoogle Scholar
  33. 33.
    Shinitzky, M. and Barenholz, Y. (1978), Biochim. Biophys. Acta 515, 367–394.Google Scholar
  34. 34.
    Litman, B. J. and Barenholz, Y. (1982), Methods Enzymol. 81, 678–685.CrossRefGoogle Scholar
  35. 35.
    Trotter, P. J. and Storch, J. (1989), Biochim. Biophys. Acta 982, 131–139.CrossRefGoogle Scholar
  36. 36.
    Jurado, A. S., Pinheiro, T. J. T., and Madeira, V. M. C. (1991), Arch. Biochem. Biophys. 289, 167–179.CrossRefGoogle Scholar
  37. 37.
    Chefurka, W., Chatelier, R. C., and Sawer, W. H. (1987), Biochim. Biophys. Acta 896, 181–186.CrossRefGoogle Scholar
  38. 38.
    Ferreira, J., Chatelain, P., Caspers, J., and Ruysschaert, J. M. (1987), Biochem. Pharmacol. 36, 4245–4250.CrossRefGoogle Scholar
  39. 39.
    Jain, M. K. and Wu, N. M. (1977), J. Membr. Biol. 34, 157–201.CrossRefGoogle Scholar
  40. 40.
    Cevc, G. (1987), Biochemistry 26, 6305–6310.CrossRefGoogle Scholar
  41. 41.
    Mouritsen, O. G. and Jörgensen, K. (1994), Chem. Phys. Lipids 73, 3–25.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Sónia M. L. J. Rosa
    • 1
  • Maria C. Antunes-Madeira
    • 1
  • Amália S. Jurado
    • 1
  • Vítor V. M. C. Madeira
    • 1
  1. 1.Centro de Neurociências, Departamento de ZoologiaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations