Skip to main content
Log in

Continuous production of antibiotics in an airlift fermentor utilizing a transverse magnetic field

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a series of experiments was conducted to demonstrate the feasibility of continuous production of penicillin antibiotic using a three-phase magneto airlift fermentor with immobilized Penicillium chrysogenum. The fermentation processes were carried out in a 2.4-L external loop airlift utilizing a transverse magnetic field. It was found that the application of the magnetic field to a bed of ferromagnetic beads affects both the hydrodynamics of the reactor and the rate of the bioconversion process occurring inside it. One hundred hours after startup, the maximum penicillin concentration increased 48% as the magnetic field intensity increased from 0 to 35 mT, owing to the increased residence time of the substrate in the riser and the positive effect of the magnetic field on the effective fluid-solid interfacial area. In addition, the detached biomass concentration in the liquid phase was found to be only 5% of the immobilized biomass, owing to low shear levels and the absence of friction among the solid-phase particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerda, H. S., Ruud, P. G., Zieleman, G. J., Luyben, K. A., and Kossen, K. A. (1986), J. Chem. Technol. Biotechnol. 36, 335–342.

    Google Scholar 

  2. Deckwer, W. D. and Schumpe, A. (1984), German Chem. Eng. 7, 168–177.

    Google Scholar 

  3. Prakash, A., Briens, C. L., and Bergougnou, M. A. (1987), Can. J. Chem. Eng. 65, 228–235.

    CAS  Google Scholar 

  4. Rosensweig, R. E. (1979), Science 204, 57–60.

    Article  CAS  Google Scholar 

  5. Lee, S. L. P. and Lasa, H. (1988), Chem. Eng. Sci. 43(9), 2445–2449.

    Article  CAS  Google Scholar 

  6. Penchev, I. P. and Hristov, J. Y. (1990), Powder Technol. 61, 1–11.

    Article  Google Scholar 

  7. Filippov, M. V. P. (1960), Prik Magnet Latvia SSR 12, 215–220.

    Google Scholar 

  8. Rosensweig, R. E., Siegell, J. H., Lee, W. K., and Mikus, T. (1982), AIChE Symp. Ser. 74(205), 8–16.

    Google Scholar 

  9. Siegell, J. H. (1982), Ind. Eng. Chem. Process Design Dev. 21, 135–140.

    Article  CAS  Google Scholar 

  10. Geuzens, P. and Phoenes, D. (1988), Chem. Eng. Commun. 67, 217–228.

    Article  CAS  Google Scholar 

  11. Arnaldos, J., Casal, J., and Pugianer, L. (1983), Powder Technol. 36, 33–38.

    Article  CAS  Google Scholar 

  12. Lee, W. K. (1988), AIChE Symp. Ser. 79(222), 87–96.

    Google Scholar 

  13. Sada, E., Katon, S., and Terashima, M. (1981), Biotechnol. Bioeng. 23, 1037–1044.

    Article  CAS  Google Scholar 

  14. Siegell, J. H., Prickle, J. C., and Dupre, J. D. (1984), Separation Sci. Technol. 19, 977–993.

    Article  Google Scholar 

  15. Warrior, M. and Tein, C. (1986), Chem. Eng. Sci. 41, 1711–1721.

    Article  CAS  Google Scholar 

  16. Rosenweig, R. E., Lee, W. K., and Siegell, J. H. (1987), Separation Sci. Technol. 22, 25–45.

    Article  Google Scholar 

  17. Pirckle, J. C., Ruziska, P. A., and Shulk, L. J. (1988), Chem. Eng. Commun. 67, 89–109.

    Article  Google Scholar 

  18. Nekrasov, Z. and Chekin, V. (1961), Izvestia Akad. Nauk. SSR Otdel Tekh Nauk. Met. Toplivo 6, 25–32.

    Google Scholar 

  19. Penchev, I. P., Al-Qodah, Z., and Hristov, J. Y. (1989), First National Conference on the Application of Fluidized Systems, vol. 1, Plovdiv, Bulgaria, pp. 120–128.

    Google Scholar 

  20. Al-Qodah, Z. (1991), PhD thesis, Sofia University of Chemical Technology, Sofia, Bulgaria.

  21. Sada, E., Katon, S., Shiozawa, M., and Fukui, T. (1983), Biotechnol. Bioeng. 25, 2285–2292.

    Article  CAS  Google Scholar 

  22. Hu, T. T. and Wu, J. Y. (1987), Chem. Eng. Res. Des. 65, 238–243.

    CAS  Google Scholar 

  23. Ivanova, V., Hristov, J., Dobreva, E., Al-Qodah, Z., and Penchev, I. (1996), Appl. Biochem. Biotechnol. 59(2), 187–198.

    CAS  Google Scholar 

  24. Colin, W., Hong, K., Gillian, M., Richard, W., Angel, M., Jorge, C., Eladia, J., and Mignel, G. (1996), Chem. Eng. J. 61, 241–246.

    Google Scholar 

  25. Thompson, V. Z. and Worden, R. M. (1997), Chem. Eng. Sci. 52(2), 279–295.

    Article  CAS  Google Scholar 

  26. Al-Qodah, Z. (2000), Can. J. Chem. Eng. 78(2).

  27. Jones, A., Wood, D. N., Razniewska, T., and Gaucher, M. (1986), Can. J. Chem. Eng. 64, 547–552.

    Article  CAS  Google Scholar 

  28. Al-Qodah, Z., Ivanova, V., Dobreva, E., Penchev, I., Hristov, J., and Petrov, R. (1991), J. Ferment. Bioeng. 71, 114–117.

    Article  Google Scholar 

  29. Ariyo, B. T., Buke, C., and Kashavarz, T. (1997), Biotechnol. Bioeng. 53, 17–20.

    Article  CAS  Google Scholar 

  30. Seigel, J. H. (1987), Powder Technol. 52, 139–148.

    Article  Google Scholar 

  31. Livingston, A. G. and Zhang, S. F. (1993), Chem. Eng. Sci. 48, 1641–1654.

    Article  CAS  Google Scholar 

  32. Christensen, L. H., Henriksen, C. M., Nielsen, J., Villadsen, J., and Egelmitani, M. (1995), J. Biotechnol. 42, 95–107.

    Article  CAS  Google Scholar 

  33. Al-Qodah, Z. and Al-Hassan, M. (2000), Chem. Eng. J., to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Qodah, Z. Continuous production of antibiotics in an airlift fermentor utilizing a transverse magnetic field. Appl Biochem Biotechnol 87, 37–55 (2000). https://doi.org/10.1385/ABAB:87:1:37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:87:1:37

Index Entries

Navigation