Advertisement

Applied Biochemistry and Biotechnology

, Volume 84, Issue 1–9, pp 277–293 | Cite as

Comparative energetics of glucose and xylose metabolism in recombinant Zymomonas mobilis

Article

Abstract

Recombinant Zymomonas mobilis CP4:pZB5 was grown with pH control in batch and continuous modes with either glucose or xylose as the sole carbon and energy source. In batch cultures in which the ratio of the final cell mass concentration to the amount of sugar in the medium was constant (i.e., under conditions that promote “coupled growth”), maximum specific rates of glucose and xylose consumption were 8.5 and 2.1 g/(g of cell…h), respectively; maximum specific rates of ethanol production for glucose and xylose were 4.1 and 1.0 g/(g of cell…h), respectively; and average growth yields from glucose and xylose were 0.055 and 0.034 g of dry cell mass (DCM)/g of sugar respectively. The corresponding value of YATP for glucose and xylose was 9.9 and 5.1 g of DCM/mol of ATP, respectively. YATP for the wild-type culture CP4 with glucose was 10.4g of DCM/mol of ATP. For single substratechem ostat cultures in which the growth rate was varied as the dilution rate (D), the maximum or “true” growth yield (max Ya/s) was calculated from Pirt plots as the inverse of the slope of the best-fit linear regression for the specific sugar utilization rate as a function of D, and the “maintenance coefficient” (m) was determined as the y-axis intercept. For xylose, values of max Y s/s and m were 0.0417g of DCM/g of xylose (YATP=6.25) and 0.04g of, xylose/(g of cell…h), respectively. However, with glucose there was an observed deviation from linearity, and the data in the Pirt plot was best fit with a second-order polynomial in D. At D>0.1/h, YATP=8.71 and m=2.05g of glu/(g of cell…h) whereas at D<0.1/h, YATP=4.9g of DCM/mol of ATP and m=0.04g of glu/(g of cell…h). This observation provides evidence to question the validity of the unstructured growth model and the assumption that Pirt's maintenance coefficient is a constant that is in dependent of the growth rate. Collectively, these observations with individual sugars and the values assign ed to various growth and fermentation parameters will be useful in the development of models to predict the behavior of rec Zm in mixed substrate fermentations of the type associated with biomass-to-ethanol processes.

Index Entries

Recombinant zymomonas xylose growth yield maintenance coefficient YATP ethanol chemostat cultures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dia z-Ricci, J. C., Tsu, M., and Bailey, J. E. (1992), Biotechnol. Bioeng. 39, 59.CrossRefGoogle Scholar
  2. 2.
    Hill, P. W., Klapatch, T. R., and Lynd, L. R. (1993), Biotechnol. Bioeng. 42, 873–883.CrossRefGoogle Scholar
  3. 3.
    Kompala, D. S., Ramkrishna, D., Jansen, N. B., and Tsao, G. T. (1986), Biotechnol. Bioeng. 28, 1044–1055.CrossRefGoogle Scholar
  4. 4.
    Lawford, H. G. and Rousseau, J. D. (1995), Appl. Biochem. Biotechnol. 51/52, 179–195.Google Scholar
  5. 5.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995) Science 267 240–243.CrossRefGoogle Scholar
  6. 6.
    Picataggio, S. K., Zhang, M., Eddy, C. K., Deanda, K. A., and Finkelstein, M. (1996), US Patent 5,514,583.Google Scholar
  7. 7.
    Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 269–286.Google Scholar
  8. 8.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 353–368.CrossRefGoogle Scholar
  9. 9.
    Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 161–172.Google Scholar
  10. 10.
    Lawford, H. G. and Rousseau, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 235–250.CrossRefGoogle Scholar
  11. 11.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 191–204.CrossRefGoogle Scholar
  12. 12.
    Thauer, R. K., Jungermann, K., and Decker, K. (1977), Bacteriol. Rev. 41, 100–180.Google Scholar
  13. 13.
    Stouthamer, A. H. (1979), in International Reviews of Biochemistry— Microbial Biochemistry, vol. 21, Quayle, J. R., ed, University Park Press, Baltimore, pp. 1–47.Google Scholar
  14. 14.
    Batley, E. H. (1987), in Energetics of Microbial Growth, John Wiley & Sons, New York.Google Scholar
  15. 15.
    Pirt, J. S. (1975) in Principles of Microbe and Cell Cultivation, John Wiley & Sons, New York.Google Scholar
  16. 16.
    Bauchop T. and Elsden, S. R. (1960), J. Gen. Microbiol. 23, 457–469.Google Scholar
  17. 17.
    Stouthamer, A. H. (1969), in Methods in Microbiology, vol. 1, Norris, J. R. and Ribbons, D. W., eds., Academic, New York, pp. 629–663.Google Scholar
  18. 18.
    Stouthamer, A. H. (1977), in Microbial Energetics, 27th Symposium of the Society of General Microbiology, Haddock, B. A. and Hamilton, W. A., eds., Cambridge University Press, London, pp. 285–315.Google Scholar
  19. 19.
    Stouthamer, A. H. (1976), in Yield Studies in Microorganisms, Meadowfield Press, Dewbury, UK.Google Scholar
  20. 20.
    Roseman, S. (1969), J. Gen. Physiol. 54, 138–184.CrossRefGoogle Scholar
  21. 21.
    Lawford, H. G., and Ruggiero, A. (1990), Biotechnol. Appl. Biochem. 12, 206–211.Google Scholar
  22. 22.
    Stevnsborg, N. and Lawford, H. G. (1986), Appl. Microbiol. Biotechnol. 25, 106–115.Google Scholar
  23. 23.
    Nipkow, A., Sonnleiter, B., and Fiechter, A. (1985), Appl. Microbiol. Biotechnol. 21, 287–291.CrossRefGoogle Scholar
  24. 24.
    Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 287–304.Google Scholar
  25. 25.
    Satyagal, V. N. and Agrawal, P. (1990), Biotechnol. Bioeng. 35, 23–30.CrossRefGoogle Scholar
  26. 26.
    Joachimsthal, E. L., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77–79, 147–158.CrossRefGoogle Scholar
  27. 27.
    Rogers, P. L. and Lawford, H. G. (1999), 21st Symposium on Biotechnology for Fuels and Chemicals, Fort Collins, CO, May 2–6, Abstract 2–10.Google Scholar
  28. 28.
    Horton, R. H., Moran, L. A., Ochs, R. S., Rawn, J. D., and Scrimgeour, K. G. (1996), in Principles of Biochemistry, 2nd ed., Prentice Hall, Upper Saddle River, NY, p. 428.Google Scholar
  29. 29.
    Lawford, H. G. and Rousseau, J. D. (1998) Appl. Biochem. Biotechnol. 70–72, 173–186.Google Scholar
  30. 30.
    Jöbses, I. M. L., Egberts, G. T. C., van Baalen, A., and Roels, J. A. (1985), Biotechnol. Bioeng. 27, 984–995.CrossRefGoogle Scholar
  31. 31.
    Jöbses, I. M. L. and Roels, J. A. (1985), Biotechnol. Bioeng. 28, 554–563.CrossRefGoogle Scholar
  32. 32.
    Feischko, J. and Humphrey, A. (1983), Biotechnol. Bioeng. 25, 1655–1660.CrossRefGoogle Scholar
  33. 33.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 295–310.CrossRefGoogle Scholar
  34. 34.
    DiMarco, A. and Romano, A. H. (1985), Appl. Environ. Microbiol 49, 151–157.Google Scholar
  35. 35.
    Parker, C., Barnell, W. O., Snoep, J. L., Ingram, L. O., and Conway, T. (1995), Mol. Microbiol. 15, 795–802.CrossRefGoogle Scholar
  36. 36.
    Bauchop, T. and Elsden, S. R. (1960), J. Gen. Microbiol. 23, 457–469.Google Scholar
  37. 37.
    Beläich, J.-P., Beläich, A., and Simonpietri, P. (1972), J. Gen. Microbiol. 70, 179–185.Google Scholar
  38. 38.
    Lazdunski, A. and Beläich, J.-P. (1972), J. Gen. Microbiol. 70, 187–197.Google Scholar
  39. 39.
    Lavers, B. H., Pang, P., MacKenzie, C. R., Lawford, G. R., and Lawford, H. G. (1982), in Advances in Biotechnology, Proceedings of International Fermentation Symposium, London, Ontario, 1980, Moo-Young, M. and Robinson, W. C., eds. Pergamon, Toronto, Canada.Google Scholar
  40. 40.
    Lawford, H. G. and Stevnsborg, N. (1986), Biotechnot. Lett. 8, 345–350.CrossRefGoogle Scholar
  41. 41.
    Lawford, H. G., (1988), Appl. Biochem. Biotechnol. 17, 203–219.Google Scholar
  42. 42.
    Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.Google Scholar
  43. 43.
    Lee, K. J., Tribe, D. E., and Rogers, P. L. (1979), Biotechnol. Lett. 1, 421–426.CrossRefGoogle Scholar
  44. 44.
    Olivera, E. G., Morais, J. O., and Periera, N. (1992), Biotechnol. Lett. 14, 1081–1084.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  1. 1.Bio-engineering Laboratory, Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations