Applied Biochemistry and Biotechnology

, Volume 83, Issue 1–3, pp 221–232 | Cite as

Nucleophilic proteolytic antibodies

  • Gennady Gololobov
  • Alfonso Tramontano
  • Sudhir Paul


Proteolytic antibodies appear to utilizecatalytic mechanisms akin to nonantibody serine proteases, assessed from mutagenesis and protease-inhibitor studies. The catalytic efficiency derives substantially from the ability to recognize the ground state with high affinity. Because the proteolytic activity is germline-encoded, catalysts with specificity for virtually any target polypeptide could potentially be developed by applying appropriate immunogens and selection strategies. Analysis of transition-state stabilizing interactions suggests that chemical reactivity ofactive-site serine residues is an important contributor to catalysis. A prototype antigen analog capable of reacting covalently with nucleophilic serine residues permitted enrichment of the catalysts from a phage-displayed lupus light-chain library. Further mechanistic developments in understanding proteolytic antibodies may lead to the isolation of catalysts suitable for passive immunotherapy of major diseases, and elicitation of catalytic immunity as a component of prophylactic vaccination.

Index Entries

Catalytic antibodies phage display serine proteases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paul, S., Sun, M., Mody, R., Eklund, S. H., Beach, C. M., Massey, R. J., and Hamel, F. (1991), J. Biol. Chem. 256, 16,128–16,134.Google Scholar
  2. 2.
    Gao, Q-S., Sun, M., Tyutyulkova, S., Webster, D., Rees, A., Tramontano, A., Massey, R., and Paul, S. (1994), J. Biol. Chem. 269, 32,389–32,393.Google Scholar
  3. 3.
    Gao, Q-S., Sun, M., Rees, A., and Paul, S. (1995), J. Mol. Biol. 253, 658–664.PubMedCrossRefGoogle Scholar
  4. 4.
    Sun, M., Li, L., Gao, Q-S., and Paul, S. (1994), J. Biol. Chem. 269, 734–738.PubMedGoogle Scholar
  5. 5.
    Sun, M., Gao, Q-S., Li, L., and Paul, S. (1994), J. Immunol. 153, 5121–5126.PubMedGoogle Scholar
  6. 6.
    Hifumi, E., Okamoto, Y., and Uda, T. (1999), J. Biosci. Bioengin. 88, 323–327.CrossRefGoogle Scholar
  7. 7.
    Hifumi, E., Okamoto, Y., and Uda, T. (2000), How and why 41S-2 antibody subunits acquire the ability to catalyze decomposition of the conserved sequence of gp41 of HIV-1. Appl. Biochem. Biotechnol. Google Scholar
  8. 8.
    Matsuura, K., Yamamoto, K., and Sinohara, H. (1994), Biochem. Biophys. Res. Commun. 204, 57–62.PubMedCrossRefGoogle Scholar
  9. 9.
    McGrath, M. E., Vasquez, J. R., Craik, C. S., Yang, A. S., Honig, B., Fletterick, R. J. (1992), Biochemistry 31, 3059–3064.PubMedCrossRefGoogle Scholar
  10. 10.
    Gololobov, G., Sun, M., and Paul, S. (1999), Mol. Immunol. In press.Google Scholar
  11. 11.
    Rao, S. N., Singh, U. C., Bash, P. A., and Kollman, P. A. (1987), Nature 328, 551–554.PubMedCrossRefADSGoogle Scholar
  12. 12.
    Tyutyulkova, S., Gao, Q-S., Thompson, A., Rennard, A., and Paul, S., (1996) Biophem. Biophys. Acta. 1316, 217–223.Google Scholar
  13. 13.
    Sun, M., Gao, Q-S., Kirnarskiy, L., Rees, A. and Paul, S. (1997), J. Mol. Biol. 271, 374–385.PubMedCrossRefGoogle Scholar
  14. 14.
    Paul, S., Volle, D. J., Beach, C. M., Johnson, D. R., Powell, M. J., and Massey, R. J. (1989), Science, 244, 1158–1162.PubMedCrossRefADSGoogle Scholar
  15. 15.
    Li, L., Kaveri, S., Tyutyulkova, S., Kazatchkine, M., and Paul, S. (1995), J. Immunol. 154, 3328–3332.PubMedGoogle Scholar
  16. 16.
    Gololobov, G. V., Chernova, E. A., Schourov, D. V., Smirnov, I. V., Kudelina, I. A., and Gabibov, A. G. (1995), Proc. Natl. Acad. Sci. USA 92, 254–257.PubMedCrossRefADSGoogle Scholar
  17. 17.
    Lacroix-Desmazes, S., Moreau, A., Sooryanarayana, Bonnemain, C., Stieltjes, N., Pashov, A., Sultan, Y., Hoebeke, J., Kazatchkine, M. D., and Kaveri, S. V. (1999), Nat. Med. 5, 1044–1047.PubMedCrossRefGoogle Scholar
  18. 18.
    Fersht, A. (1984), Enzyme Structure and Mechanism (2nd ed.), New York: WH Freeman and Company, 1–475.Google Scholar
  19. 19.
    Goodnow, C. C., Adelstein, S., and Basten, A. (1990), Science 248, 1373–1379.PubMedCrossRefADSGoogle Scholar
  20. 20.
    Nossal, G. J. V. (1995), Annu. Rev. Immunol. 13, 1–27.PubMedCrossRefGoogle Scholar
  21. 21.
    Paul, S. (1996), Mol. Biotechnol. 5, 197–207.PubMedGoogle Scholar
  22. 22.
    Warshel, A., Naray-Szabo, G., Sussman, F., Hwang, J. K. (1989), Biochemistry 28, 3629–3637.PubMedCrossRefGoogle Scholar
  23. 23.
    Carter, P. and Wells, J. A. (1988), Nature 332, 564–568.PubMedCrossRefADSGoogle Scholar
  24. 24.
    Sampson, N. S., and Bartlett, P. A. (1991), Biochemistry 30, 2255–2263.PubMedCrossRefGoogle Scholar
  25. 25.
    Bryant, R., and Hansen, D. E. (1996), J. Am. Chem. Soc. 118, 5498–5499.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Gennady Gololobov
    • 1
  • Alfonso Tramontano
    • 1
  • Sudhir Paul
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of Texas Houston Medical SchoolHouston

Personalised recommendations