Applied Biochemistry and Biotechnology

, Volume 83, Issue 1–3, pp 1–12 | Cite as


Synergy of innate and acquired immunity
  • Heinz Kohler


The antibody molecule possesses a number of so-called unconventional binding sites in the variable domain that are expressed and function independently from the antigen-binding site. These sites are encoded in the germiline, predominantly in framework residues. By this definition, these sites function as part of the innate immunity, and are not subject to antigendriven mutation and maturation. In this article, we focus on the evidence for the function and utility of the self-binding domain. The self-binding or autophilic domain has been discovered on murine germline-encoded antibodies from the S107/T15 Vh family. Autophilic antibodies form self-complexes after attaching to targets, but remain monomeric in solution. A peptide has been identified that confers self-binding if chemically attached to antibodies. Because this modification enhances the overall avidity of antibodies for target binding, therapeutic and diagnostic antibodies can be biotechnologically improved.

The concept of super antibodies is introduced here to describe the unique coexistence and synergism of acquired immunity with innate immunity via antigen-specific and unconventional functional domains. As not every antibody qualifies as a super antibody, biotechnology engineering can produce superantibodies with superior targeting and therapeutic properties.

Index Entries

Antibody variable domain unconventional binding site autophilic binding superantibody 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eldeman, G. M., Cunningham, B. A., Gall, W. E., Gottlieb, P. D., Rutishauser, U., and Wasdal, M. J. (1969) Proc. Nat. Acad. Sci. USA 63, 78–82.CrossRefADSGoogle Scholar
  2. 2.
    Fleischmann, J. B., Pain, R. H., and Porter, R. R. (1962), Arch. Biochem. Biophys. Suppl. 1, 174–192.Google Scholar
  3. 3.
    Hilschmann, N. and Craig, L. C. (1962) Proc. Natl. Acad. Sci. USA 53, 14013–1406.Google Scholar
  4. 4.
    Kohler, H., Shimizu, A., Paul, C., and Putnam, F. W. (1970), Nature 227, 1318–1321.PubMedCrossRefADSGoogle Scholar
  5. 5.
    Kobat, E. A. and Wu, T. T. (1971), Ann. NY Acad. Sci. 190, 2019–2021.Google Scholar
  6. 6.
    Pojak, R. J., Amzel, L. N., Chen, B. L., Phizackerley, R. P., and Saul, F. (1974), Proc. Natl. Acad. Sci. USA 71, 3440–3444.CrossRefADSGoogle Scholar
  7. 7.
    Silverman, G. J. (1997), Immunol. Today 18, 379–386.PubMedCrossRefGoogle Scholar
  8. 8.
    Silverman, G. J. (1997), Int. Rev. Immunol., 14, 259–290.PubMedGoogle Scholar
  9. 9.
    Rajagopalan, K., Pavlinkova, G., Levy, S., Pokkuluri, P., Schiffer, M., Haley, B. E., and Kohler, H. (1996), Proc. Natl. Acad. Sci. USA 93, 6019–6024.PubMedCrossRefADSGoogle Scholar
  10. 10.
    Kang, C-Y., Brunck, T. K., Kieber-Emmons, T., Blalock, J. E., and Kohler, H. (1988), Science 240, 1034–1036.PubMedCrossRefADSGoogle Scholar
  11. 11.
    Paul, S., Volle, D. J., Beach, C. M., Johnson, D. R., Powell, M. J., and Massay, R. J. (1989), Science 244, 1158–1162.PubMedCrossRefADSGoogle Scholar
  12. 12.
    Shoenfeld, Y. and George, J., (1997), Ann. NY Acad. Sci. 815, 342–349.PubMedCrossRefGoogle Scholar
  13. 13.
    Kang, C-Y., Cheng, H-L., Rudikoff, S., and Kohler, H. (1987), J. Exp. Med. 165, 1332–1337.PubMedCrossRefGoogle Scholar
  14. 14.
    Greenspan, N. S., Dacek, D. A., and Cooper, L. J., (1989), FASEB J. 10, 2203–2207.Google Scholar
  15. 15.
    Kang, C.-Y. and Kohler, H. (1986), J. Exp. Med. 163, 787–791.PubMedCrossRefGoogle Scholar
  16. 16.
    Kaveri, S., Halpern, R., Kang, C-Y., and Kohler, H. (1991), Mol. Immunol. 2, 733–778.Google Scholar
  17. 17.
    Potter, M., and Leon, M. A. (1968), Science 162, 369–371.PubMedCrossRefADSGoogle Scholar
  18. 18.
    Xiyun, Y., Evans, S. V., Kaminki, M. J., Gillies, S. D., Reisfeld, R. A., Noughton, A. N., and Chapman, P. B. (1996) J. Immunol. 157, 1582–1588.Google Scholar
  19. 19.
    Briles, D. E., Forman, S., Hudak, S., and Claflin, J. L. (1982), Eur. J. Immunol. 14, 1027–1030.CrossRefGoogle Scholar
  20. 20.
    Lim, P. L., Choy, W. F., Chan, S. T., and Ng, S. S. (1994), Infect. Immun. 62, 1658–1661.PubMedGoogle Scholar
  21. 21.
    Lee, W., Cosenza, H., and Kohler, H. (1974), Nature 247, 55–57.PubMedCrossRefADSGoogle Scholar
  22. 22.
    Rodwell, J. D., Alvarez V. L., Lee, C., Lopes, A. D., Goers, J. W., King, H. D., Powsner, H. J., and McKearn, T. J. (1986). Proc. Nat. Acad. Sci. USA 83, 2632–2636.PubMedCrossRefADSGoogle Scholar
  23. 23.
    Pharm. Res. & Manufact. America, 1998 Biotechnology Survey.Google Scholar
  24. 24.
    Tutt, A. L., French, R. R., Illidge, T. M., Honeychurch, J., McBride, H. M., Penfold, C. A., Fearon, D. T., Parkhouse, R. M. E., Klaus, G. G. B., and Glennie, M. J. (1998), J. Immunol. 161, 3176–3185.PubMedGoogle Scholar
  25. 25.
    Kohler, H., and Paul, S. (1998), Immunol. Today 19, 221–227.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Heinz Kohler
    • 1
  1. 1.Immpheron Inc.LexingtonUSA

Personalised recommendations