Applied Biochemistry and Biotechnology

, Volume 82, Issue 3, pp 243–258 | Cite as

Hydrolysis of steam-pretreated lignocellulose

Synergism and adsorption for cellobiohydrolase I and endogulcanase II of trichoderma reesei
  • Johan Karlsson
  • József Medve
  • Folke TjerneldEmail author


The mechanism of hydrolysis of cellulose is important for improving the enzymatic conversion in bioprocesses based on lignocellulose. Adsorption and hydrolysis experiments were performed with cellobiohydrolase I (CBH I) and endoglucanase II (EG II) from Trichoderma reesei on a realistic lignocellulose substrates: steam-pretreated willow. The enzymes were studied both alone and in equimolar mixtures. Adsorption isotherms were determined at 4 and 40°C during 90-min reaction times. Both CBH I and EG II adsorbed stronger at 40 than at 4°C. The time course of adsorption and hydrolysis, 3 min to 48 h, was studied at 40°C. About 90% of the cellulases were adsorbed within 2 h. The hydrolysis rate was high in the beginning but decreased during the time course. Based on adsorption data, the hydrolysis and synergism were analyzed as function of adsorbed enzyme. CBH I showed a linear correlation between hydrolysis and adsorbed enzyme, whereas for EG II the corresponding curve leveled off at both 4 and 40°C. At low conversion, below 1%, EG II produced as much soluble sugars as CBH I. At higher conversion, CBH I was more efficient than EG II. The synergism as function of adsorbed enzyme increased with bound enzyme before reaching a stable value of about 2. The effect of varying the ratio of CBH I:EG II was studied at fixed total enzyme loading and by changing the ratio between the enzymes. Only a small addition (5%) of EG II to a CBH I solution was shown to be sufficient for nearly maximal synergism. The ratio between EG II and CBH I was not critical. The ratio 40% EG II:60% CBH I showed similar conversion to 5% EG II:95% CBH I. Modifications of the conventional endo-exo synergism model are proposed.

Index Entries

Trichoderma reesei cellulase cellulose hydrolysis lignocellulose cellobiohydrolase endoglucanase synergism adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eklund, R., Galbe, M., and Zacchi, G. (1995), Bioresour. Technol. 52, 225–229.CrossRefGoogle Scholar
  2. 2.
    Teeri, T. T. and Koivula, A. (1995), Carbohydr. Europe 12, 28–33.Google Scholar
  3. 3.
    Saloheimo, M., Nakari-Setälä, T., Tenkanen, M., and Penttilä, M. (1997), Eur. J. Biochem. 249, 584–591.CrossRefGoogle Scholar
  4. 4.
    Divne, C., Ståhlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles, J. K. C., Teeri, T. T., and Jones, T. A. (1994), Science 265, 524–528.CrossRefGoogle Scholar
  5. 5.
    Rouvinen, J., Bergfors, T., Teeri, T. T., Knowles, J. K. C., and Jones, T. A. (1990), Science 249, 380–386.CrossRefGoogle Scholar
  6. 6.
    Kraulis, P. J., Clore, G. M., Nilges, M., Jones, T. A., Pettersson, G., Knowles, J. K. C., and Gronenborn, A. M. (1989), Biochemistry 28, 7241–7257.CrossRefGoogle Scholar
  7. 7.
    Kleywegt, G., Zou, J-Y., Divne, C., Davies, G. J., Sinning, I., Ståhlberg, J., Reinikainen, T., Srisodsuk, M., Teeri, T., and Jones, T. A. (1997), J. Mol. Biol. 272, 383–397.CrossRefGoogle Scholar
  8. 8.
    Kleman-Leyer, K. M., Siika-aho, M., Teeri, T. T., and Kirk, T. K. (1996), Appl. Environ. Microbiol. 62, 2883–2887.Google Scholar
  9. 9.
    Medve, J., Ståhlberg, J., and Tjerneld, F. (1994), Biotechnol. Bioeng. 44, 1064–1073.CrossRefGoogle Scholar
  10. 10.
    Nidetzky, B., Zachariae, W., Gercken, G., Hayn, M., and Steiner, W. (1994), Enzyme Microb. Technol. 16, 43–52.CrossRefGoogle Scholar
  11. 11.
    Fägerstam, L. G. and Pettersson, G. (1980), FEBS Lett. 119, 97–100.CrossRefGoogle Scholar
  12. 12.
    Henrissat, B., Driguez, H., Viet, C., and Schülein, M. (1985), Bio/Technology 3, 722–726.CrossRefGoogle Scholar
  13. 13.
    Tomme, P., Warren, R. A. J., and Gilkes, N. R. (1995), Adv. Microb. Physiol. 37, 1–81.CrossRefGoogle Scholar
  14. 14.
    Medve, J., Karlsson, J., Lee, D., and Tjerneld, F. (1998), Biotechnol. Bioeng. 59, 621–634.CrossRefGoogle Scholar
  15. 15.
    Réczey, K., Szengyel, Z., Eklund, R., and Zacchi, G. (1996), Bioresour. Technol. 57, 25–30.CrossRefGoogle Scholar
  16. 16.
    Medve, J., Lee, D., and Tjerneld, F. (1998), J. Chromatogr. 808, 153–165.CrossRefGoogle Scholar
  17. 17.
    Rahkamo, L., Siika-aho, M., Vehviläinen, M., Dolk, M., Viikari, L., Nousianen, P., and Buchert, J. (1996), Cellulose 3, 153–163.CrossRefGoogle Scholar
  18. 18.
    Ståhlberg, J., Johansson, G., and Pettersson, G. (1993), Biochim. Biophys. Acta 1157, 107–113.Google Scholar
  19. 19.
    Holtzapple, M., Cognata, M., Shu, Y., and Hendrickson, C. (1990), Biotechnol. Bioeng. 36, 275–287.CrossRefGoogle Scholar
  20. 20.
    Béguin, P. and Aubert, J.-P. (1994), FEMS Microbiol. Rev. 13, 25–58.CrossRefGoogle Scholar
  21. 21.
    Medve, J. (1997), PhD thesis, Lund University, Lund, Sweden.Google Scholar
  22. 22.
    Chernoglazov, V. M., Ermolova, O. V., and Klyosov, A. A. (1988), Enzyme Microb. Technol. 10, 503–507.CrossRefGoogle Scholar
  23. 23.
    Linder, M. and Teeri, T. T. (1996), Proc. Natl. Acad. Sci. USA 93, 12,251–12,255.CrossRefGoogle Scholar
  24. 24.
    Hoffrén, A.-M., Teeri, T. T., and Teleman, O. (1995), Protein Eng. 8, 443–450.CrossRefGoogle Scholar
  25. 25.
    Nidetzky, B., Steiner, W., and Claeyssens, M. (1994), Biochem. J. 303, 817–823.Google Scholar
  26. 26.
    Nidetzky, B., Hayn, M., Macarron, R., and Steiner, W. (1993), Biotechnol. Lett. 151, 71–76.CrossRefGoogle Scholar
  27. 27.
    Woodward, J., Lima, M., and Lee, N. E. (1988), Biochem. J. 255, 895–899.Google Scholar
  28. 28.
    Nidetzky, B., Steiner, W., Hayn, M., and Claeyssens, M. (1994), Biochem. J. 298, 705–710.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Department of Biochemistry, Center for Chemistry and Chemical EngineeringLund UniversityLundSweden

Personalised recommendations