Skip to main content
Log in

Biosynthesis of poly-β-hydroxybutyrate and exopolysaccharides on azotobacter chroococcum strain 6B utilizing simple and complex carbon sources

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Coproduction of poly-β-hydroxybutyrate (PHB) and exopolysaccharides (EPS) was investigated with Azotobacter chroococcum strain 6B isolated from soil samples. The bacterium was cultured using various carbon sources solely or with 0.1 g/L of ammonium sulfate. Ammonium addition resulted in reduced PHB and EPS production with glucose, fructose, and sucrose media, but cellular mass remained constant except for sucrose. Protein was nearly twofold higher in ammonium-grown cultures. Glucose and fructose alone biosynthesized high amounts of EPS (maximum 2.1 and 1.1 g/L, respectively, at 72 h), whereas PHB was accumulated only in glucose-grown cells. Sucrose almost did not produce EPS. Conversely, PHB content was the highest obtained from all experimented conditions (1.1 g/L at 48 h, 40% cell dry wt). When a complex carbon source such as sugar cane molasses was utilized, PHB was accumulated concomitant with EPS production from the initial time to 48 h (0.75 g/L, 37% cell dry wt and 0.6 g/L, respectively), and then PHB decayed at 72 h (0.2 g/L). On the other hand, EPS continued to be biosynthesized (1.1 g/L, 72 h). PHB fractions of total intra- and extracellular biopolymers were calculated. Sucrose-modified Burk’s medium without ammonium addition is suggested as a medium capable of diverting the carbon source for the production of intracellular PHB rather than EPS with A. chroococcum 6B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, A. and Dawes, E. A. (1990), Microbiol. Rev. 54(1), 450–472.

    CAS  Google Scholar 

  2. Holmes, P. A. (1985), Phys. Technol. 16, 32–36.

    Article  CAS  Google Scholar 

  3. Hangii, U. J. (1995), FEMS Microbiol. Rev. 16, 213–220.

    Article  Google Scholar 

  4. Sutherland, Y. (1985), Annu. Rev. Microbiol. 39, 243–270.

    Article  CAS  Google Scholar 

  5. Sutherland, Y. (1986), Microbial Sci. 3, 5–8.

    CAS  Google Scholar 

  6. Paneque, A. and Peciña, A. (1994), Appl. Biochem. Biotechnol. 49, 51–58.

    Article  Google Scholar 

  7. Cohen, G. and Johnstone, D. (1964), J. Bacteriol. 88(2), 329–338.

    CAS  Google Scholar 

  8. Dawes, E., Ribbons, D., and Stockdale, H. (1968), J. Bacteriol. 95(5), 1798–1803.

    Google Scholar 

  9. Page, W., Manchak, J., and Rudy, B. (1992), Appl. Environ. Microbiol. 58(9), 2866–2873.

    CAS  Google Scholar 

  10. Jackson, F. and Dawes, E. (1976), J. Gen. Microbiol. 97, 303–312.

    CAS  Google Scholar 

  11. Senior, P. and Dawes, E. (1971), Biochem. J. 125, 55–66.

    CAS  Google Scholar 

  12. Parker, C. and Scutt, P. B. (1960), Biochim. Biophys. Acta 38, 230–238.

    Article  CAS  Google Scholar 

  13. Lee, Y., Stegantseva, E., Savenkova, L., and Park, Y. (1995), J. Microb. Biotechnol. 5(2), 100–104.

    CAS  Google Scholar 

  14. Quagliano, J. and Miyazaki, S. (1997), Appl. Microbiol. Biotechnol. 48, 662–664.

    Article  CAS  Google Scholar 

  15. Tavernier, P., Portais, J., Saucedo Nava, J., Courtois, J., Courtois, B., and Barbotin, J. (1997), Appl. Environ. Microbiol. 63(1), 21–26.

    CAS  Google Scholar 

  16. Kamat, M., Kelkar, S., and Vermani, M. (1995), J. Ferment. Bioeng. 80(6), 599–602.

    Article  Google Scholar 

  17. Gerhardt, P. (1994), Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, DC.

    Google Scholar 

  18. Russel, J. A. (1944), J. Biol. Chem. 156, 457–461.

    Google Scholar 

  19. Braunegg, G., Sonnleitner, B., and Lafferty, R. (1978), Eur. J. Appl. Microbiol. Biotechnol. 6, 29–37.

    Article  CAS  Google Scholar 

  20. Krieg, N. and Holt, J. (1984), Bergey’s Manual of Systematic Bacteriology, vol. 2, Williams & Wilkins, Baltimore.

    Google Scholar 

  21. Jacobson, A., Zell, E., and Wilson, P. W. (1962), Arch. Mikrobiol. 41, 1–10.

    Article  Google Scholar 

  22. Jarman, T., Deavin, L., Slocombe, S., and Rigaelato, R. (1978), J. Gen. Microbiol. 107, 59–64.

    CAS  Google Scholar 

  23. Chen, W. P., Chen, J. Y., Chang, S. C., and Su, C. L. (1985), Appl. Environ. Microbiol. 49, 543–546.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia S. Miyazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quagliano, J.C., Miyazaki, S.S. Biosynthesis of poly-β-hydroxybutyrate and exopolysaccharides on azotobacter chroococcum strain 6B utilizing simple and complex carbon sources. Appl Biochem Biotechnol 82, 199–208 (1999). https://doi.org/10.1385/ABAB:82:3:199

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:82:3:199

Index Entries

Navigation