Advertisement

Applied Biochemistry and Biotechnology

, Volume 82, Issue 3, pp 199–208 | Cite as

Biosynthesis of poly-β-hydroxybutyrate and exopolysaccharides on azotobacter chroococcum strain 6B utilizing simple and complex carbon sources

  • Javier C. Quagliano
  • Silvia S. MiyazakiEmail author
Article

Abstract

Coproduction of poly-β-hydroxybutyrate (PHB) and exopolysaccharides (EPS) was investigated with Azotobacter chroococcum strain 6B isolated from soil samples. The bacterium was cultured using various carbon sources solely or with 0.1 g/L of ammonium sulfate. Ammonium addition resulted in reduced PHB and EPS production with glucose, fructose, and sucrose media, but cellular mass remained constant except for sucrose. Protein was nearly twofold higher in ammonium-grown cultures. Glucose and fructose alone biosynthesized high amounts of EPS (maximum 2.1 and 1.1 g/L, respectively, at 72 h), whereas PHB was accumulated only in glucose-grown cells. Sucrose almost did not produce EPS. Conversely, PHB content was the highest obtained from all experimented conditions (1.1 g/L at 48 h, 40% cell dry wt). When a complex carbon source such as sugar cane molasses was utilized, PHB was accumulated concomitant with EPS production from the initial time to 48 h (0.75 g/L, 37% cell dry wt and 0.6 g/L, respectively), and then PHB decayed at 72 h (0.2 g/L). On the other hand, EPS continued to be biosynthesized (1.1 g/L, 72 h). PHB fractions of total intra- and extracellular biopolymers were calculated. Sucrose-modified Burk’s medium without ammonium addition is suggested as a medium capable of diverting the carbon source for the production of intracellular PHB rather than EPS with A. chroococcum 6B.

Index Entries

Poly-β-hydroxybutyrate exopolysaccharides coproduction Azotobacter chroococcum complex carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, A. and Dawes, E. A. (1990), Microbiol. Rev. 54(1), 450–472.Google Scholar
  2. 2.
    Holmes, P. A. (1985), Phys. Technol. 16, 32–36.CrossRefGoogle Scholar
  3. 3.
    Hangii, U. J. (1995), FEMS Microbiol. Rev. 16, 213–220.CrossRefGoogle Scholar
  4. 4.
    Sutherland, Y. (1985), Annu. Rev. Microbiol. 39, 243–270.CrossRefGoogle Scholar
  5. 5.
    Sutherland, Y. (1986), Microbial Sci. 3, 5–8.Google Scholar
  6. 6.
    Paneque, A. and Peciña, A. (1994), Appl. Biochem. Biotechnol. 49, 51–58.CrossRefGoogle Scholar
  7. 7.
    Cohen, G. and Johnstone, D. (1964), J. Bacteriol. 88(2), 329–338.Google Scholar
  8. 8.
    Dawes, E., Ribbons, D., and Stockdale, H. (1968), J. Bacteriol. 95(5), 1798–1803.Google Scholar
  9. 9.
    Page, W., Manchak, J., and Rudy, B. (1992), Appl. Environ. Microbiol. 58(9), 2866–2873.Google Scholar
  10. 10.
    Jackson, F. and Dawes, E. (1976), J. Gen. Microbiol. 97, 303–312.Google Scholar
  11. 11.
    Senior, P. and Dawes, E. (1971), Biochem. J. 125, 55–66.Google Scholar
  12. 12.
    Parker, C. and Scutt, P. B. (1960), Biochim. Biophys. Acta 38, 230–238.CrossRefGoogle Scholar
  13. 13.
    Lee, Y., Stegantseva, E., Savenkova, L., and Park, Y. (1995), J. Microb. Biotechnol. 5(2), 100–104.Google Scholar
  14. 14.
    Quagliano, J. and Miyazaki, S. (1997), Appl. Microbiol. Biotechnol. 48, 662–664.CrossRefGoogle Scholar
  15. 15.
    Tavernier, P., Portais, J., Saucedo Nava, J., Courtois, J., Courtois, B., and Barbotin, J. (1997), Appl. Environ. Microbiol. 63(1), 21–26.Google Scholar
  16. 16.
    Kamat, M., Kelkar, S., and Vermani, M. (1995), J. Ferment. Bioeng. 80(6), 599–602.CrossRefGoogle Scholar
  17. 17.
    Gerhardt, P. (1994), Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, DC.Google Scholar
  18. 18.
    Russel, J. A. (1944), J. Biol. Chem. 156, 457–461.Google Scholar
  19. 19.
    Braunegg, G., Sonnleitner, B., and Lafferty, R. (1978), Eur. J. Appl. Microbiol. Biotechnol. 6, 29–37.CrossRefGoogle Scholar
  20. 20.
    Krieg, N. and Holt, J. (1984), Bergey’s Manual of Systematic Bacteriology, vol. 2, Williams & Wilkins, Baltimore.Google Scholar
  21. 21.
    Jacobson, A., Zell, E., and Wilson, P. W. (1962), Arch. Mikrobiol. 41, 1–10.CrossRefGoogle Scholar
  22. 22.
    Jarman, T., Deavin, L., Slocombe, S., and Rigaelato, R. (1978), J. Gen. Microbiol. 107, 59–64.Google Scholar
  23. 23.
    Chen, W. P., Chen, J. Y., Chang, S. C., and Su, C. L. (1985), Appl. Environ. Microbiol. 49, 543–546.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Centro de Investigaciones Biotecnológicas en Microorganismos (CIBEM), Microbiología, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations