Applied Biochemistry and Biotechnology

, Volume 82, Issue 3, pp 185–198 | Cite as

Lipase-catalyzed production of short-chain acids terpenyl esters of interest to the food industry

  • Françoise Laboret
  • Robert PerraudEmail author


The production of low molecular weight esters as flavor compounds by biotechnological processes has a potential interest for the food industry. The use of natural available substrates and enzymes is an essential part of the process design, because the products may obtain natural label. In this study, direct esterification of citronellol and geraniol with short-chain fatty acids catalyzed by free lipase from Mucor miehei was performed with high yields in n-hexane. The effects of the acid:alcohol ratio on the bioconversion rate of increasing chain length esters was investigated. To reach the optimum yield, substrates and enzyme concentration were determined. The inhibiting effects of acid are strongly attenuated by reducing the quantity of acid and increasing the amount of enzyme in media following the optimum values. Improvements have been made to increase the ester purity. The consumption of excess substrate by adding calculated amounts of acid gives a 10% yield enhancement, and leads to 100% pure terpenyl esters. The first steps to a scale-up application were attempted using a reactor that allowed us to produce ester quantities up to 100 cm3. Separation and purification of the products were treated with success, underlining the lipase stability and efficiency under the conditions of this study. The ability to recover the enzyme, and reusing it in bioconversions, plays a major role in reducing the cost of the overall process.

Index Entries

Lipase Mucor miehei direct esterification enzymatic synthesis organic solvents terpenyl esters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Langrand, G., Triantaphylides, C., and Baratti, J. (1988), Biotechnol. Lett. 10, 549–554.CrossRefGoogle Scholar
  2. 2.
    Langrand, G., Rondot, N., Triantaphylides, C., and Baratti, J. (1990), Biotechnol. Lett. 12, 581–586.CrossRefGoogle Scholar
  3. 3.
    Welsh, F. W., Williams, R. E., and Dawson, K. (1990), J. Food Science 55, 1679–1682.CrossRefGoogle Scholar
  4. 4.
    Brady, L., Brzozanski, A. M., Derewenda, Z. S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J. P., Christiansen, L., Huge-Jensen, B., Norskov, L., Thim, L., and Menge, U. (1990), Nature 343, 767–770.CrossRefGoogle Scholar
  5. 5.
    Brenner, R. H., Halling, P. J., and Bell, G. (1988), Biotechnol. Lett. 334, 528–530.Google Scholar
  6. 6.
    Valivety, R. H., Halling, P. J., and Macrae, A. R. (1992a), Biochim. Biophys. Acta 1118, 218–222.Google Scholar
  7. 7.
    Valivety, R. H., Halling, P. J., and Bell, G. (1991), Biotechnol. Lett. 15, 1133–1138.CrossRefGoogle Scholar
  8. 8.
    Iwai, M., Okumura, S., and Tsujisaka, Y. (1980), Agric. Biol. Chem. 44, 2731, 2732.Google Scholar
  9. 9.
    de Ćastro, H. F., Anderson, W. A., Moo-Young, M., and Legge, R. L. (1992), in Biocatalysis in Non-Conventional Media, Tramper, J., Vermùe, M. H., and Beeftink, H. H., eds., Elsevier, New York, p. 475.Google Scholar
  10. 10.
    Claon, P. A. and Akoh, C. C. (1993), Biotechnol. Lett. 12, 1211–1216.Google Scholar
  11. 11.
    Fonteyn, F., Blecker, C., Lognay, G., Marlier, M., and Severin, M. (1994), Biotechnol. Lett. 16, 693–696.CrossRefGoogle Scholar
  12. 12.
    Yee, L. N., Akoh, C. C., and Phillips, R. S. (1995), Biotechnol. Lett. 17, 67–70.CrossRefGoogle Scholar
  13. 13.
    Stamatis, H., Christakopoulos, P., Kekos, D., Macris, B. J., and Kolisis, F. N. (1998), J. Mol. Catal. B: Enzyme 4, 229–236.CrossRefGoogle Scholar
  14. 14.
    Nakagawa, H., Watanabe, S., Shimura, S., Kirimura, K., and Usami, S. (1998), World J. Microbiol. Biotechnol. 14, 219–222.CrossRefGoogle Scholar
  15. 15.
    Chatterjee, T. and Bhattacharyya, D. K. (1998), Biotechnol. Lett. 20, 865–868.CrossRefGoogle Scholar
  16. 16.
    Molinari, F., Villa, R., and Aragozzini, F. (1998), Biotechnol. Lett. 20, 41–44.CrossRefGoogle Scholar
  17. 17.
    Oguntimein, G. B., Anderson, W. A., and Moo-Young, M. (1995), Biotechnol. Lett. 17, 77–82.CrossRefGoogle Scholar
  18. 18.
    De Castro, H. F., Napoleao, D. A. S., and De Oliveira, P. C. (1998), Appl. Biochem. Biotechnol. 70–72, 667–675.CrossRefGoogle Scholar
  19. 19.
    Perraud, R., Moreau, L., and Krahé, E. (1995), Deutsche Lebensmittel-Rundschau 91, 219–221.Google Scholar
  20. 20.
    Perraud, R. and Laboret, F. (1995), Appl. Microbiol. Biotechnol. 44, 321–326.CrossRefGoogle Scholar
  21. 21.
    Claon, P. A. and Akoh, C. C. (1993), Biotechnol. Lett. 15, 1211–1216.Google Scholar
  22. 22.
    Claon, P. A. and Akoh, C. C. (1994), Enzyme Microb. Technol. 16, 835–838.CrossRefGoogle Scholar
  23. 23.
    Akoh, C. C. and Yee, L. N. (1998), J. Mol. Catal. B: Enzyme 4, 149–153.CrossRefGoogle Scholar
  24. 24.
    Takahashi, K., Saito, Y., and Inada, Y. (1988), J. Am. Oil Chem. Soc. 65, 911–916.CrossRefGoogle Scholar
  25. 25.
    Chulalaksananukul, W., Condoret, S., and Combes, D. (1992), Enzyme Microb. Technol. 14, 293–298.CrossRefGoogle Scholar
  26. 26.
    Chulalaksananukul, W., Condoret, S., and Combes, D. (1993), Enzyme Microb. Technol. 15, 691–698.CrossRefGoogle Scholar
  27. 27.
    Manjòn, A., Iborra, J. L., and Arocas, A. (1991), Biotechnol. Lett. 13, 339–344.CrossRefGoogle Scholar
  28. 28.
    Borzeix, F., Monot, F., and Vandecasteele, J. P. (1992), Enzyme Microb. Technol. 4, 791–797.CrossRefGoogle Scholar
  29. 29.
    Okumura, S., Iwai, M., and Tsujisaka, Y. (1979), Biochim. Biophys. Acta 575, 156–165.Google Scholar
  30. 30.
    Laane, C., Boeren, S., and Vos, K. (1985), Trends Biotechnol. 3, 251, 252.CrossRefGoogle Scholar
  31. 31.
    Laane, C., Boeren, S., Vos, K., and Veeger, C. (1987), in Biocatalysis in Organic Media, Laane, C., Tramper, J., and Lilly, M. D., eds., Elsevier, New York, p. 65.Google Scholar
  32. 32.
    Zaks, A. and Klibanov, A. M. (1988), J. Biol. Chem. 263, 8017–8021.Google Scholar
  33. 33.
    Dordick, J. S. (1989), Enzyme Microb. Technol. 11, 194–211.CrossRefGoogle Scholar
  34. 34.
    Claon, P. A. and Akoh, C. C. (1994), J. Am. Chem. Soc. 71, 575–578.CrossRefGoogle Scholar
  35. 35.
    Laboret, F. (1996), PhD thesis, Université Joseph Fourier, Grenoble 1, France.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Groupe de Recherche sur l’Environnement et la Chimie AppliquéeUniversité Joseph FourierGrenobleFrance

Personalised recommendations