Skip to main content
Log in

Lipase-catalyzed production of short-chain acids terpenyl esters of interest to the food industry

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of low molecular weight esters as flavor compounds by biotechnological processes has a potential interest for the food industry. The use of natural available substrates and enzymes is an essential part of the process design, because the products may obtain natural label. In this study, direct esterification of citronellol and geraniol with short-chain fatty acids catalyzed by free lipase from Mucor miehei was performed with high yields in n-hexane. The effects of the acid:alcohol ratio on the bioconversion rate of increasing chain length esters was investigated. To reach the optimum yield, substrates and enzyme concentration were determined. The inhibiting effects of acid are strongly attenuated by reducing the quantity of acid and increasing the amount of enzyme in media following the optimum values. Improvements have been made to increase the ester purity. The consumption of excess substrate by adding calculated amounts of acid gives a 10% yield enhancement, and leads to 100% pure terpenyl esters. The first steps to a scale-up application were attempted using a reactor that allowed us to produce ester quantities up to 100 cm3. Separation and purification of the products were treated with success, underlining the lipase stability and efficiency under the conditions of this study. The ability to recover the enzyme, and reusing it in bioconversions, plays a major role in reducing the cost of the overall process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langrand, G., Triantaphylides, C., and Baratti, J. (1988), Biotechnol. Lett. 10, 549–554.

    Article  CAS  Google Scholar 

  2. Langrand, G., Rondot, N., Triantaphylides, C., and Baratti, J. (1990), Biotechnol. Lett. 12, 581–586.

    Article  CAS  Google Scholar 

  3. Welsh, F. W., Williams, R. E., and Dawson, K. (1990), J. Food Science 55, 1679–1682.

    Article  CAS  Google Scholar 

  4. Brady, L., Brzozanski, A. M., Derewenda, Z. S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J. P., Christiansen, L., Huge-Jensen, B., Norskov, L., Thim, L., and Menge, U. (1990), Nature 343, 767–770.

    Article  CAS  Google Scholar 

  5. Brenner, R. H., Halling, P. J., and Bell, G. (1988), Biotechnol. Lett. 334, 528–530.

    CAS  Google Scholar 

  6. Valivety, R. H., Halling, P. J., and Macrae, A. R. (1992a), Biochim. Biophys. Acta 1118, 218–222.

    CAS  Google Scholar 

  7. Valivety, R. H., Halling, P. J., and Bell, G. (1991), Biotechnol. Lett. 15, 1133–1138.

    Article  Google Scholar 

  8. Iwai, M., Okumura, S., and Tsujisaka, Y. (1980), Agric. Biol. Chem. 44, 2731, 2732.

    CAS  Google Scholar 

  9. de Ćastro, H. F., Anderson, W. A., Moo-Young, M., and Legge, R. L. (1992), in Biocatalysis in Non-Conventional Media, Tramper, J., Vermùe, M. H., and Beeftink, H. H., eds., Elsevier, New York, p. 475.

    Google Scholar 

  10. Claon, P. A. and Akoh, C. C. (1993), Biotechnol. Lett. 12, 1211–1216.

    Google Scholar 

  11. Fonteyn, F., Blecker, C., Lognay, G., Marlier, M., and Severin, M. (1994), Biotechnol. Lett. 16, 693–696.

    Article  CAS  Google Scholar 

  12. Yee, L. N., Akoh, C. C., and Phillips, R. S. (1995), Biotechnol. Lett. 17, 67–70.

    Article  CAS  Google Scholar 

  13. Stamatis, H., Christakopoulos, P., Kekos, D., Macris, B. J., and Kolisis, F. N. (1998), J. Mol. Catal. B: Enzyme 4, 229–236.

    Article  CAS  Google Scholar 

  14. Nakagawa, H., Watanabe, S., Shimura, S., Kirimura, K., and Usami, S. (1998), World J. Microbiol. Biotechnol. 14, 219–222.

    Article  CAS  Google Scholar 

  15. Chatterjee, T. and Bhattacharyya, D. K. (1998), Biotechnol. Lett. 20, 865–868.

    Article  CAS  Google Scholar 

  16. Molinari, F., Villa, R., and Aragozzini, F. (1998), Biotechnol. Lett. 20, 41–44.

    Article  CAS  Google Scholar 

  17. Oguntimein, G. B., Anderson, W. A., and Moo-Young, M. (1995), Biotechnol. Lett. 17, 77–82.

    Article  CAS  Google Scholar 

  18. De Castro, H. F., Napoleao, D. A. S., and De Oliveira, P. C. (1998), Appl. Biochem. Biotechnol. 70–72, 667–675.

    Article  Google Scholar 

  19. Perraud, R., Moreau, L., and Krahé, E. (1995), Deutsche Lebensmittel-Rundschau 91, 219–221.

    CAS  Google Scholar 

  20. Perraud, R. and Laboret, F. (1995), Appl. Microbiol. Biotechnol. 44, 321–326.

    Article  CAS  Google Scholar 

  21. Claon, P. A. and Akoh, C. C. (1993), Biotechnol. Lett. 15, 1211–1216.

    CAS  Google Scholar 

  22. Claon, P. A. and Akoh, C. C. (1994), Enzyme Microb. Technol. 16, 835–838.

    Article  CAS  Google Scholar 

  23. Akoh, C. C. and Yee, L. N. (1998), J. Mol. Catal. B: Enzyme 4, 149–153.

    Article  CAS  Google Scholar 

  24. Takahashi, K., Saito, Y., and Inada, Y. (1988), J. Am. Oil Chem. Soc. 65, 911–916.

    Article  CAS  Google Scholar 

  25. Chulalaksananukul, W., Condoret, S., and Combes, D. (1992), Enzyme Microb. Technol. 14, 293–298.

    Article  CAS  Google Scholar 

  26. Chulalaksananukul, W., Condoret, S., and Combes, D. (1993), Enzyme Microb. Technol. 15, 691–698.

    Article  CAS  Google Scholar 

  27. Manjòn, A., Iborra, J. L., and Arocas, A. (1991), Biotechnol. Lett. 13, 339–344.

    Article  Google Scholar 

  28. Borzeix, F., Monot, F., and Vandecasteele, J. P. (1992), Enzyme Microb. Technol. 4, 791–797.

    Article  Google Scholar 

  29. Okumura, S., Iwai, M., and Tsujisaka, Y. (1979), Biochim. Biophys. Acta 575, 156–165.

    CAS  Google Scholar 

  30. Laane, C., Boeren, S., and Vos, K. (1985), Trends Biotechnol. 3, 251, 252.

    Article  CAS  Google Scholar 

  31. Laane, C., Boeren, S., Vos, K., and Veeger, C. (1987), in Biocatalysis in Organic Media, Laane, C., Tramper, J., and Lilly, M. D., eds., Elsevier, New York, p. 65.

    Google Scholar 

  32. Zaks, A. and Klibanov, A. M. (1988), J. Biol. Chem. 263, 8017–8021.

    CAS  Google Scholar 

  33. Dordick, J. S. (1989), Enzyme Microb. Technol. 11, 194–211.

    Article  CAS  Google Scholar 

  34. Claon, P. A. and Akoh, C. C. (1994), J. Am. Chem. Soc. 71, 575–578.

    Article  CAS  Google Scholar 

  35. Laboret, F. (1996), PhD thesis, Université Joseph Fourier, Grenoble 1, France.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Perraud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laboret, F., Perraud, R. Lipase-catalyzed production of short-chain acids terpenyl esters of interest to the food industry. Appl Biochem Biotechnol 82, 185–198 (1999). https://doi.org/10.1385/ABAB:82:3:185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:82:3:185

Index Entries

Navigation