Advertisement

Applied Biochemistry and Biotechnology

, Volume 82, Issue 3, pp 167–173 | Cite as

Protection of myocardial mitochondria against oxidative damage by selenium-containing abzyme m4G3

  • Dan-Hua Qi
  • Gui-Min LuoEmail author
  • Li Zhou
  • Tong-Shu Yang
Article

Abstract

Selenium-containing abzyme (m4G3) was prepared and its protection of myocardial mitochondria against oxidative damage was studied using the swelling of mitochondria, quantity of lipid peroxidation products, and change in cytochrome-c oxidase activity as a measure of mitochondrial damage. The results showed that m4G3 could inhibit mitochondrial damage caused by the hypoxanthine-xanthine oxidase system in vitro. Electronic spin resonance (ESR) studies demonstrated that m4G3 could decrease the amount of free radicals generated in the damage system.

Index Entries

Abzyme m4G3 mitochondria oxidative damage xanthine oxidase/hypoxanthine system glutathione peroxidase enzyme mimics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sies, H. (1993), Free Rad. Biol. Med. 14, 313–323.CrossRefGoogle Scholar
  2. 2.
    Chen, H., Pellett, L. J., and Andersen, H. J. (1993), Free Rad. Biol. Med. 14, 473–482.CrossRefGoogle Scholar
  3. 3.
    Luo, G. M., Zhu, Z. Q., Ding, L., Gao, G., Sun, Q. A., Liu, Z., Yang, T. S., and Shen, J. C. (1994), Biochem. Biophys. Res. Commun. 198, 1240–1247.CrossRefGoogle Scholar
  4. 4.
    Zhu, Z. Q., Ding, L., Luo, G. M., Liu, Z., Sun, Q. A., Yang, T. S., and Shen, J. C. (1994), Biochem. Biophys. Res. Commun. 202, 1645–1650.CrossRefGoogle Scholar
  5. 5.
    Luo, G. M., Ding, L., Liu, Z., Yang, T. S., and Ni, J. Z. (1998), Ann. NY Acad. Sci. 864, 136–141.CrossRefGoogle Scholar
  6. 6.
    Lansman, R. A., Shade, R. O., Shapiro, J. F., and Avise, J. C. (1981), J. Mol. Evol. 17, 214–226.CrossRefGoogle Scholar
  7. 7.
    Bradford, M. M. (1976), Anal. Biochem. 72, 248.CrossRefGoogle Scholar
  8. 8.
    Ball, E. G. (1939), J. Biol. Chem. 128, 51–67.Google Scholar
  9. 9.
    Fong, K. L., McCay, P. B., and Poyer, J. L. (1973), J. Biol. Chem. 248, 7792–7797.Google Scholar
  10. 10.
    Munday, R. and Winterbourn, C. C. (1989), Biochem. Pharmacol. 38, 4349–4352.CrossRefGoogle Scholar
  11. 11.
    Wendel, A. (1981), Methods Enzymol. 77, 325.CrossRefGoogle Scholar
  12. 12.
    Hunter, F. E., Scott, A., and Hoffsten, P. E. (1964), J. Biol. Chem. 239, 614–621.Google Scholar
  13. 13.
    Mak, I. T., Misra, H. P., and Weglicki, W. B. (1983), J. Biol. Chem. 258, 13,733–13,737.Google Scholar
  14. 14.
    Yonetani, T. (1961), J. Biol. Chem. 236, 1680–1689.Google Scholar
  15. 15.
    Rashha-Step, J., Turro, N. J., and Cederbaum, A. I. (1993), Arch. Biochem. Biophys. 300, 391–400.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Dan-Hua Qi
    • 1
  • Gui-Min Luo
    • 1
    Email author
  • Li Zhou
    • 1
  • Tong-Shu Yang
    • 2
  1. 1.National Laboratory of Enzyme EngineeringJilin UniversityChangchunChina
  2. 2.Institute of Epidemic DiseasesBethune Medical UniversityChangchunChina

Personalised recommendations