Skip to main content
Log in

Influence of redox potential on product distribution in Clostridium thermosuccinogenes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Clostridium thermosuccinogenes are the only known anaerobic thermophilic bacteria that ferment inulin to succinate and acetate as major products and formate, lactate, and ethanol as minor products. In this study, organic acid production in 2-L fermentations having an initially low (−300 to −330 mV) or high (−220 to −250 mV) redox potential was compared for two strains of C. thermosuccinogenes (DSM 5808 and DSM 5809). Although DSM 5809 consistently provided higher succinate yield, high variability in results was attributed to the absence of redox control during the fermentations, and, therefore, fermentations at three controlled redox potentials (−240, −275, and −310 mV) were conducted. At an intermediate redox potential (−275 mV), the succinate yield was the greatest (0.36 g of succinate/g of hexose unit), whereas ethanol yield was the least (0.02 g/g). Redox potential did not significantly affect acetate or lactate formation. At controlled redox potential of −275 mV, the growth of DSM 5809 on three substrates was also compared: inulin, fructose, and glucose. DSM 5809 had similar growth rates when inulin (0.20/h) or glucose (0.21/h) was the carbon source but grew more slowly when fructose (0.16/h) was the carbon source. Also, the specific rate of utilization of fructose by DSM 5809 was higher (0.89 g of fructose/[g of biomass·h]) compared to glucose (0.53 g/[g·h]) or inulin (0.55 g/[g·h]). Succinate was the major product formed by DSM 5809 fermenting inulin (0.50 g/[g·h]) or glucose (0.36 g/[g·h]), and ethanol was the principal product when DSM 5809 fermented fructose (0.54 g/[g·h]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guiraud, J. and Galzy, P. (1990), in Yeast: Biotechnology and Biocatalysis, Verachtert, H. and De Mot, R., eds., Marcel-Dekker, New York, pp. 255–296.

    Google Scholar 

  2. Gottschalk, G. (1986), in Bacterial Metabolism, Springer-Verlag, New York, pp. 210–280.

    Google Scholar 

  3. Fuchs, A. (1987), Starch/Starke 39, 335–343.

    Article  CAS  Google Scholar 

  4. Oiwa, H., Naganuma, M., and Ohnuma, S. (1987), Agric. Biol. Chem. 51, 2819–2820.

    CAS  Google Scholar 

  5. Drent, W. J. and Gottschal, J. C. (1991), FEMS Microbiol. Lett. 78, 285–292.

    Article  CAS  Google Scholar 

  6. Drent, W. J., Lahpor, G. A., Wiegant, W. M., and Gottschal, J. C. (1991), Appl. Environ. Microbiol. 57, 455–462.

    CAS  Google Scholar 

  7. Winstrom, L. O. (1978), in Kirk-Othmer Encyclopedia of Chemical Technology, vol. 21, Mark, H. F., Othmer, D. F., Overberger, C. G., and Seaborg, G. T., eds., Wiley, New York, pp. 848–864.

    Google Scholar 

  8. Zeikus, J. G., Elankovan, P., and Grethlein, A. (1995), Chem. Proc. 58, 71–73.

    Google Scholar 

  9. Datta, R., Glassner, D. A., Jain, M. K., and Vick Roy, J. R. (1991), European patent 405,707.

  10. Lemme, C. J. and Datta, R. (1987), European patent 249,773.

  11. Glassner, D. A. (1989), European patent 389,103.

  12. Glassner, D. A. and Datta, R. (1992), US patent 5,143,834.

  13. Datta, R. (1989), US patent 4,885,247.

  14. Guettler, M. V., Jain, M. K., and Soni, B. K. (1996), US patent 5,504,004.

  15. Samuelov, N. S., Lamed, R., and Zeikus, J. G. (1991), Appl. Environ. Microbiol. 57, 3013–3019.

    CAS  Google Scholar 

  16. Kim, J., Bajpai, R., and Iannotti, E. L. (1988), Appl. Biochem. Biotechnol. 18, 175–186.

    Article  CAS  Google Scholar 

  17. Peguin, S. and Soucaille, P. (1996), Biotechnol. Bioeng. 51, 342–348.

    Article  CAS  Google Scholar 

  18. Eiteman, M. A. and Chastain, M. J. (1997), Anal. Chim. Acta 338, 69–75.

    Article  CAS  Google Scholar 

  19. Miller, G. L. (1959), Anal. Chim. 31, 426–428.

    Article  CAS  Google Scholar 

  20. Ott, L. (1993), An Introduction to Statistical Methods and Data Analysis, 4th ed., Wadsworth Publishing, Belmont, CA.

    Google Scholar 

  21. Kim, T. S. and Kim, B. H. (1988), Biotechnol. Lett. 10, 123–128.

    Article  CAS  Google Scholar 

  22. Jee, H. S., Nishio, N., and Nagai, S. (1987), J. Gen. Appl. Microbiol. 33, 401–408.

    CAS  Google Scholar 

  23. Jee, H. S., Mano, T., Nishio, N., and Nagai, S. (1988), J. Ferment. Technol. 66, 123–126.

    Article  CAS  Google Scholar 

  24. Kaiser, M. and Sawers, G. (1994), FEMS Microbiol. Lett. 117, 163–168.

    Article  CAS  Google Scholar 

  25. Dominguez, H., Rollin, C., Guyonvarch, A., Guerquin-Kern, J.-L., Cocaign-Bousquet, M., and Lindley, N. D. (1998), Eur. J. Biochem. 254, 96–102.

    Article  CAS  Google Scholar 

  26. Garrigues, C., Loubiere, P., Lindley, N. D., and Cocaign-Bousquet, M. (1997), J. Bacteriol. 179, 5282–5287.

    CAS  Google Scholar 

  27. Baribato, F., Astruc, S., Soucaille, P., Camarasa, C., Salmon, J. M., and Bories, A. (1997), Microbiology 143, 2423–2432.

    Article  Google Scholar 

  28. Dijkerman, R., Ledeboer, J., Op den Camp, H. J. M., Prins, R. A., and van der Drift, C. (1997), Curr. Microbiol. 34, 91–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Eiteman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridhar, J., Eiteman, M.A. Influence of redox potential on product distribution in Clostridium thermosuccinogenes . Appl Biochem Biotechnol 82, 91–101 (1999). https://doi.org/10.1385/ABAB:82:2:91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:82:2:91

Index Entries

Navigation