Skip to main content
Log in

Inulinase synthesis from a mesophilic culture in submerged cultivation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A newly isolated mesophilic bacterial strain from dahlia rhizosphere, identified as Staphylococcus sp. and designated as RRL-M-5, was evaluated for inulinase synthesis in submerged cultivation using different carbon sources individually or in combination with inulin as substrate. Inulin appeared as the most favorable substrate at a 0.5–1.0% concentration. Media pH influenced the enzyme synthesis by the bacterial strain, which showed an optimum pH at 7.0–7.5. Supplementation of fermentation medium with external nitrogen (organic and inorganic) showed a mixed impact on bacterial activity of enzyme synthesis. The addition of soybean meal and corn steep solid resulted in about an 11% increase in enzyme titers. Among inorganic nitrogen sources, ammonium sulfate was found to be the most suitable. Maximum enzyme activities (446 U/L) were obtained when fermentation was carried out at 30°C for 24 h with a medium containing 0.5% inulin as a sole carbon source and 0.5% soybean meal as the nitrogen source. Bacterial inulinase could be a good source for the hydrolysis of inulin for the production of d-fructose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vandamme, E. J. and Derycke, D. G. (1983), Adv. Appl. Microbiol. 29, 139–176.

    Article  CAS  Google Scholar 

  2. Pandey, A., Soccol, C. R., Selvakumar, P., Soccol, V. T., Krieger, N., and Fontana, J. D. (1999), Appl. Biochem. Biotechnol. 81(1), 35–52.

    Article  CAS  Google Scholar 

  3. Duvnjak, Z., Kosaric, N., and Hayes, R. D. (1981), Biotechnol. Lett. 3, 589–594.

    Article  CAS  Google Scholar 

  4. Favela-Torres, E., Allais, J. J., and Barratti, J. (1986), Biotechnol. Bioeng. 18, 850–856.

    Article  Google Scholar 

  5. Ohta, K., Hamada, S., and Nakamura, T. (1993), Appl. Environ. Microbiol. 59, 729–733.

    CAS  Google Scholar 

  6. Margaritis, A., Merchant, F. J. A., and Veliky, I. A. (1983), Biotechnol. Lett. 5, 271–276.

    Article  CAS  Google Scholar 

  7. Grootwassink, H. W. D. and Hewit, G. M. (1983), J. Gen. Microbiol. 129, 31–41.

    CAS  Google Scholar 

  8. Ongen-Baysal, G. and Sukan, S. S. (1996), Biotechnol. Lett. 18, 1431–1434.

    Article  Google Scholar 

  9. Selvakumar, P. and Pandey, A. (1999), Biores. Technol. 69(2), 123–127.

    Article  CAS  Google Scholar 

  10. Negoro, H. and Kito, E. (1973), J. Ferment. Technol. 51, 96–102.

    CAS  Google Scholar 

  11. Beluche, I., Guiraud, J. P., and Galzy, P. (1980), Folia Microbiol. 25, 32–39.

    CAS  Google Scholar 

  12. Nakamura, T., Shitara, A., Matsuda, S., Matsuo, T., Suiko, M., and Ohta, K. (1997), J. Ferment. Bioeng. 84(4), 313–318.

    Article  CAS  Google Scholar 

  13. Nakamura, T., Ogate, Y., Shitara, A., Nakamura, A., and Ohta, K. (1995), J. Ferment. Bioeng. 80, 164–169.

    Article  CAS  Google Scholar 

  14. Ettalibi, M. and Barratti, J. C. (1987), Appl. Microbiol. Biotechnol. 26, 13–20.

    Article  CAS  Google Scholar 

  15. Kaur, N., Kaur, M., Gupta, A. K., and Singh, R. (1992), J. Chem. Technol. Biotechnol. 53, 279–284.

    Article  CAS  Google Scholar 

  16. Xiao, R., Tanida, M., and Takao, S. (1988), J. Ferment. Technol. 66(5), 553–558.

    Article  CAS  Google Scholar 

  17. Efstathion, I., Reyset, G., and Truffant, N. (1986), Appl. Microbiol. Biotechnol. 25, 143–149.

    Google Scholar 

  18. Kim, D. H., Choi, Y. J., Song, S. K., and Yun, J. W. (1997), Biotechnol. Lett. 19(4), 369–371.

    Article  CAS  Google Scholar 

  19. Baron, M, Florencio, J. A., Zamin, G. M., Ferreira, A. G., Ennes, R., and Fontana, J. D. (1996), Appl. Biochem. Biotechnol. 57–58, 605–615.

    Article  Google Scholar 

  20. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  22. Passador-Gurgel, G. C., Furian, S. A., Meller, J. K., and Jonas, R. (1996), Appl. Microbiol. Biotechnol. 45, 158–161.

    Article  CAS  Google Scholar 

  23. Patent no. PN, JP 7327604, dt. 19.12.1995

  24. Poorna, V. and Kulkarni, P. (1996), Indian J. Microbiol. 36, 117, 118.

    Google Scholar 

  25. Fontana, J. D., Baron, M., Diniz, A. C. P., and Franco, V. C. (1994), Appl. Biochem. Biotechnol. 45–46, 257–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, A., Joseph, S., Ashakumary, L. et al. Inulinase synthesis from a mesophilic culture in submerged cultivation. Appl Biochem Biotechnol 82, 103–114 (1999). https://doi.org/10.1385/ABAB:82:2:103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:82:2:103

Index Entries

Navigation