Advertisement

Applied Biochemistry and Biotechnology

, Volume 82, Issue 2, pp 103–114 | Cite as

Inulinase synthesis from a mesophilic culture in submerged cultivation

  • Ashok Pandey
  • Simon Joseph
  • L. Ashakumary
  • P. Selvakumar
  • Carlos R. Soccol
Article

Abstract

A newly isolated mesophilic bacterial strain from dahlia rhizosphere, identified as Staphylococcus sp. and designated as RRL-M-5, was evaluated for inulinase synthesis in submerged cultivation using different carbon sources individually or in combination with inulin as substrate. Inulin appeared as the most favorable substrate at a 0.5–1.0% concentration. Media pH influenced the enzyme synthesis by the bacterial strain, which showed an optimum pH at 7.0–7.5. Supplementation of fermentation medium with external nitrogen (organic and inorganic) showed a mixed impact on bacterial activity of enzyme synthesis. The addition of soybean meal and corn steep solid resulted in about an 11% increase in enzyme titers. Among inorganic nitrogen sources, ammonium sulfate was found to be the most suitable. Maximum enzyme activities (446 U/L) were obtained when fermentation was carried out at 30°C for 24 h with a medium containing 0.5% inulin as a sole carbon source and 0.5% soybean meal as the nitrogen source. Bacterial inulinase could be a good source for the hydrolysis of inulin for the production of d-fructose.

Index Entries

Inulinase mesophilic bacteria inulin submerged fermentation carbon and nitrogen sources 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vandamme, E. J. and Derycke, D. G. (1983), Adv. Appl. Microbiol. 29, 139–176.CrossRefGoogle Scholar
  2. 2.
    Pandey, A., Soccol, C. R., Selvakumar, P., Soccol, V. T., Krieger, N., and Fontana, J. D. (1999), Appl. Biochem. Biotechnol. 81(1), 35–52.CrossRefGoogle Scholar
  3. 3.
    Duvnjak, Z., Kosaric, N., and Hayes, R. D. (1981), Biotechnol. Lett. 3, 589–594.CrossRefGoogle Scholar
  4. 4.
    Favela-Torres, E., Allais, J. J., and Barratti, J. (1986), Biotechnol. Bioeng. 18, 850–856.CrossRefGoogle Scholar
  5. 5.
    Ohta, K., Hamada, S., and Nakamura, T. (1993), Appl. Environ. Microbiol. 59, 729–733.Google Scholar
  6. 6.
    Margaritis, A., Merchant, F. J. A., and Veliky, I. A. (1983), Biotechnol. Lett. 5, 271–276.CrossRefGoogle Scholar
  7. 7.
    Grootwassink, H. W. D. and Hewit, G. M. (1983), J. Gen. Microbiol. 129, 31–41.Google Scholar
  8. 8.
    Ongen-Baysal, G. and Sukan, S. S. (1996), Biotechnol. Lett. 18, 1431–1434.CrossRefGoogle Scholar
  9. 9.
    Selvakumar, P. and Pandey, A. (1999), Biores. Technol. 69(2), 123–127.CrossRefGoogle Scholar
  10. 10.
    Negoro, H. and Kito, E. (1973), J. Ferment. Technol. 51, 96–102.Google Scholar
  11. 11.
    Beluche, I., Guiraud, J. P., and Galzy, P. (1980), Folia Microbiol. 25, 32–39.Google Scholar
  12. 12.
    Nakamura, T., Shitara, A., Matsuda, S., Matsuo, T., Suiko, M., and Ohta, K. (1997), J. Ferment. Bioeng. 84(4), 313–318.CrossRefGoogle Scholar
  13. 13.
    Nakamura, T., Ogate, Y., Shitara, A., Nakamura, A., and Ohta, K. (1995), J. Ferment. Bioeng. 80, 164–169.CrossRefGoogle Scholar
  14. 14.
    Ettalibi, M. and Barratti, J. C. (1987), Appl. Microbiol. Biotechnol. 26, 13–20.CrossRefGoogle Scholar
  15. 15.
    Kaur, N., Kaur, M., Gupta, A. K., and Singh, R. (1992), J. Chem. Technol. Biotechnol. 53, 279–284.CrossRefGoogle Scholar
  16. 16.
    Xiao, R., Tanida, M., and Takao, S. (1988), J. Ferment. Technol. 66(5), 553–558.CrossRefGoogle Scholar
  17. 17.
    Efstathion, I., Reyset, G., and Truffant, N. (1986), Appl. Microbiol. Biotechnol. 25, 143–149.Google Scholar
  18. 18.
    Kim, D. H., Choi, Y. J., Song, S. K., and Yun, J. W. (1997), Biotechnol. Lett. 19(4), 369–371.CrossRefGoogle Scholar
  19. 19.
    Baron, M, Florencio, J. A., Zamin, G. M., Ferreira, A. G., Ennes, R., and Fontana, J. D. (1996), Appl. Biochem. Biotechnol. 57–58, 605–615.CrossRefGoogle Scholar
  20. 20.
    Miller, G. L. (1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  21. 21.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.Google Scholar
  22. 22.
    Passador-Gurgel, G. C., Furian, S. A., Meller, J. K., and Jonas, R. (1996), Appl. Microbiol. Biotechnol. 45, 158–161.CrossRefGoogle Scholar
  23. 23.
    Patent no. PN, JP 7327604, dt. 19.12.1995Google Scholar
  24. 24.
    Poorna, V. and Kulkarni, P. (1996), Indian J. Microbiol. 36, 117, 118.Google Scholar
  25. 25.
    Fontana, J. D., Baron, M., Diniz, A. C. P., and Franco, V. C. (1994), Appl. Biochem. Biotechnol. 45–46, 257–268.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Ashok Pandey
    • 1
    • 2
  • Simon Joseph
    • 1
  • L. Ashakumary
    • 1
  • P. Selvakumar
    • 1
  • Carlos R. Soccol
    • 2
  1. 1.Biotechnology Division, Regional Research LaboratoryCouncil of Scientific and Industrial ResearchTrivandrumIndia
  2. 2.Laboratorio de Processos Biotecnologicos, Departamento de Engenharia QuimicaUniversidade Federal do ParanaCuritiba-PRBrazil

Personalised recommendations