Applied Biochemistry and Biotechnology

, Volume 82, Issue 1, pp 1–15 | Cite as

Solid-state fermentation of lignocellulosic plant residues from Brassica napus by Pleurotus ostreatus

Article

Abstract

Solid-state fermentation (SSF) of inedible parts of rapeseed was carried out using a white-rot fungus, Pleurotus ostreatus, to degrade lignocellulosic material for mycelial-single cell protein (SCP) production. This SSF system has the potential to be adapted to a controlled ecological life support system in space travel owing to the lack of storage space. The system for converting lignocellulosic material to SCP by P. ostreatus is simple; it can be carried out in a compact reactor. The fungal vegetative growth was better with a particle size of plant material ranging from 0.42 to 10 mm, whereas lignin degradation of the lignocellulose was the highest with particle sizes ranging from 0.42 to 0.84 mm. The addition of veratry alcohol (3,4-dimethoxybenzyl alcohol), hydrogen peroxide, and glycerol promotes lignocellulose degradation by P. ostreatus. The enhancement of bioconversion was also observed when a gas-flow bioreactor was used to supply oxygen and to maintain the constant moisture of the reactor. With this reactor, approx 85% of the material was converted to fungal and other types of biomass after 60 d of incubation.

Index Entries

Lignocellulose controlled ecological life support system biodegradation Pleurotus ostreatus solid-state fermentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sarikaya, A. and Ladisch, M. R. (1997), Appl. Biochem. Biotechnol. 62, 131–149.PubMedGoogle Scholar
  2. 2.
    Mitchell, C. A. (1994), Am. J. Clin. Nutr. 60, 820S-824S.PubMedGoogle Scholar
  3. 3.
    Kohlmann, K. L., Sarikaya, A., Westgate, P. J., Weil, J., Velayudhan, A., Hendrickson, R., and Ladisch, M. R. (1995), in Enzymatic Degradation of Insoluble Polymers, vol. 618, Saddler, J. N. and Penner, M. H., eds., ACS Symposium Series, American Chemical Society, Washington, DC, p. 237.Google Scholar
  4. 4.
    Leisola, M. S. A. and Fiechter, A. (1985), in Advances in Biotechnological Processes, vol. 5, Mizrahi, A. and van Wezel, A. L., eds., Alan Liss Inc., New York, 59–89.Google Scholar
  5. 5.
    Kirk, T. K. and Farrell, R. L. (1987), Annu. Rev. Microbiol. 41, 465–505.PubMedCrossRefGoogle Scholar
  6. 6.
    Blanchette, R. A., Otjen, L., Effland, M. J., and Eslyn, W. E. (1985), Wood Sci. Technol. 19, 35–46.CrossRefGoogle Scholar
  7. 7.
    Reid, I. D. (1983), Appl. Environ. Microbiol. 45(3), 830–837.PubMedGoogle Scholar
  8. 8.
    Zadrazil, F. (1980), Eur. J. Appl. Microbial. Biotechnol. 9, 243–248.CrossRefGoogle Scholar
  9. 9.
    Agosin, E. and Odier, E. (1985), Appl. Microbial. Biotechnol. 21, 397–403.CrossRefGoogle Scholar
  10. 10.
    Peterson, G. R. and Baresi, L. (1990), in Advanced Environmental/Thermal Control and Life Support Systems SP-831, 901282, Society of Automotive Engineers, Warrendale, PA, pp. 89–100.Google Scholar
  11. 11.
    Agosin, E., Tollier, M. T., Brillouet, J. M., Thivend, P., and Odier, E. (1986), J. Sci. Food Agric. 37, 97–106.CrossRefGoogle Scholar
  12. 12.
    Hatakka, A. J. (1983), Eur. J. Appl. Microbiol. Biotechnol. 18, 350–357.CrossRefGoogle Scholar
  13. 13.
    Reid, I. D. (1989), Enzyme Microb. Technol. 11, 786–803.CrossRefGoogle Scholar
  14. 14.
    Hudson, H. J. (1986), in Fungal Biology, Willis, A. J. and Sleigh, M. A., eds., Edward Arnold, New York, pp. 84–109.Google Scholar
  15. 15.
    Buswell, J. A. (1991), in Handbook of Applied Mycology of Soils and Plants, Arora, D. K., Muterjl, K. G., and Knudson, G. R., eds., Marcell Dekker, New York, pp. 425–480.Google Scholar
  16. 16.
    Kaneshiro, T. (1977), Dev. Ind. Microbiol. 18, 591–597.Google Scholar
  17. 17.
    Lindenfelser, L. A., Detroy, R. W., Ramstack, J. M., and Worden, K. A. (1979), Dev. Ind. Microbiol. 20, 541–551.Google Scholar
  18. 18.
    Popp, J. L., Kalyanaraman, B., and Kirk, T. K. (1990), Biochemistry 29, 10,475–10,480.CrossRefGoogle Scholar
  19. 19.
    Sarikaya, A. and Ladisch, M. R. (1997), Appl. Biochem. Biotechnol. 62, 71–85.Google Scholar
  20. 20.
    Helrich, K., ed. (1990), Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed., AOAC International, Arlington, VA.Google Scholar
  21. 21.
    Goering, H. K. and Van Soest, P. J. (1970), in Agricultural Handbook, no. 379, jacket no. 387–598, Agricultural Research Service, U.S. Department of Agriculture, Washington, DC.Google Scholar
  22. 22.
    Van Soest, P. J. and Wine, R. H. (1967), J. Assoc. Off. Anal. Chem. 50, 50.Google Scholar
  23. 23.
    Van Soest, P. J. and Wine, R. H. (1968), J. Assoc. Off. Anal. Chem. 54, 780–785.Google Scholar
  24. 24.
    Kohlmann, K. L., Westgate, P. J., Weil, J., and Ladisch, M. R. (1993), SAE Technical Paper Series, 932251.Google Scholar
  25. 25.
    Ladisch, M. R. (1989), in Biomass Handbook, Kitani, O. and Hall, C. W., eds., Gordon & Breach, London, p. 434.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Laboratory of Renewable Resources EngineeringUSA
  2. 2.Department of Agricultural and Biological EngineeringPurdue UniversityWest Lafayette

Personalised recommendations