Applied Biochemistry and Biotechnology

, Volume 80, Issue 3, pp 205–219 | Cite as

Lipase-catalyzed synthesis of (S)-naproxen ester prodrug by transesterification in organic solvents

  • Shau-Wei Tsai
  • Chin-Shain Tsai
  • Chun-Sheng Chang


A lipase-catalyzed enantioselective transesterification process was developed for the synthesis of (S)-naproxen 2-N-morpholinoethyl ester prodrug from racemic 2,2,2-trifluoroethyl naproxen ester in organic solvents. By selecting isooctane and 37°C as the best solvent and temperature, the apparent fits of the initial conversion rates for transesterification and hydrolysis side reaction suggest a ping-pong Bi-Bi enzymatic mechanism with the alcohol as a competitive enzyme inhibitor. Improvements in the initial conversion rate and the productivity for the desired (S)-ester product were obtained after comparing with the result of an enantioselective esterification process. Studies of water content in isooctane and alcohol containing various N,N-dialkylamino groups on the enzyme activity and enantioselectivity, as well as the recovery of (S)-ester product by using extraction, were also reported.

Index Entries

Lipase enantioselective transesterification (S)-naproxen ester prodrugs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Federsel, H. J. (1993), CHEMTECH 12, 24–33.Google Scholar
  2. 2.
    Margolin, A. J. (1993), Enzyme Microb. Technol. 15, 266–280.CrossRefGoogle Scholar
  3. 3.
    Hutt, A. J. and Caldwell, J. (1984), Clin. Pharmacokinet. 9, 371–373.Google Scholar
  4. 4.
    Shanbhag, V. R., Crider, A. M., Gokhale, R., Harpalani, A., and Dick, R. M. (1992), J. Pharm. Sci. 81, 149–154.CrossRefGoogle Scholar
  5. 5.
    Bundgaard, H. (1985), Design of Prodrugs, Elsevier, Amsterdam.Google Scholar
  6. 6.
    Nielsen, N. N. and Bundgaard, H. (1988), J. Pharm. Sci. 77, 285–298.CrossRefGoogle Scholar
  7. 7.
    Tammara, V. K., Narurkar, M. M., Crider, A. M., and Khan, A. M. (1993), Pharm. Res. 10, 1191–1199.CrossRefGoogle Scholar
  8. 8.
    Chang, C. S. and Tsai, S. W. (1997), Enzyme Microb. Technol. 20, 635–639.CrossRefGoogle Scholar
  9. 9.
    Tsai, S. W., Lin, J. J., Chang C. S., and Chen, J. P. (1997), Biotechnol. Prog. 13, 82–88.CrossRefGoogle Scholar
  10. 10.
    Chang, C. S. and Tsai, S. W. (1997), Appl. Biochem. Biotechnol., Part A: Enzyme Eng. Biotechnol. 68, 135–142.Google Scholar
  11. 11.
    Tsai, S. W. and Wei, H. J. (1993), J. Liq. Chromatogr. 16, 2993–3001.Google Scholar
  12. 12.
    Allenmark, S. and Ohlsson, A. (1992), Chirality 4, 98–102.CrossRefGoogle Scholar
  13. 13.
    Nielsen, N. M. and Bundgaard, H. (1987), Int. J. Pharm. 39, 75–85.CrossRefGoogle Scholar
  14. 14.
    Rizzi, M. P., Stylos, P., and Reuss, M. (1992), Enzyme Microb. Technol. 14, 709–714.CrossRefGoogle Scholar
  15. 15.
    Chen, C. S., Fujimoto, Y., Girdaukas, G., and Sih, C. J. (1982), J. Am. Chem. Soc. 104, 7294–7299.CrossRefGoogle Scholar
  16. 16.
    Tsai, S. W. and Wei, H. J. (1994), Biocatalysis 11, 33–45.Google Scholar
  17. 17.
    Dordick, J. S. (1990), in Applied Biocatalysis, vol. 1, Blanch, H. W. and Clark, D. S., eds., Marcel Dekker, New York, pp. 1–52.Google Scholar
  18. 18.
    Halling, P. (1994), Enzyme Microb. Technol. 16, 178–206.CrossRefGoogle Scholar
  19. 19.
    Phillips, R. S. (1992), Enzyme Microb. Technol. 14, 417–419.CrossRefGoogle Scholar
  20. 20.
    Palomer, A., Cabre, M., Ginesta, J., Mauleon, D., and Carganico, G. (1993), Chirality 5, 320–328.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Shau-Wei Tsai
    • 1
  • Chin-Shain Tsai
    • 1
  • Chun-Sheng Chang
    • 1
  1. 1.Department of Chemical EngineeringNational Cheng Kung UniversityTainan TaiwanRepublic of China

Personalised recommendations