Skip to main content
Log in

Modeling cellobiose hydrolysis with integrated kinetic models

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The enzyme cellobiase Novozym 188, which is used for improving hydrolysis of bagasse with cellulase, was characterized in its commercial available form and integrated kinetic models were applied to the hydrolysis of cellobiose. The specific activity of this enzyme was determined for pH values from 3.0–7.0, and temperatures from 40–75°C, with cellobiose at 2 g/L. Thermal stability was measured at pH 4.8 and temperatures from 40–70°C. Substrate inhibition was studied at the same pH, 50°C, and cellobiose concentrations from 0.4–20 g/L. Product inhibition was determined at 50°C, pH 4.8, cellobiose concentrations of 2 and 20 g/L, and initial glucose concentration nearly zero or 1.8 g/L. The enzyme has shown the greatest specific activity, 17.8 U/mg, at pH 4.5 and 65°C. Thermal activation of the enzyme followed Arrhenius equation with the Energy of Activation being equal to 11 kcal/mol for pH values 4 and 5. Thermal deactivation was adequately modeled by the exponential decay model with Energy of Deactivation giving 81.6 kcal/mol. Kinetics parameters for substrate uncompetitive inhibition were: Km=2.42 mM, V max=16.31 U/mg, Ks=54.2 mM. Substrate inhibition was clearly observed above 10 mM cellobiose. Product inhibition at the concentration studied has usually doubled the time necessary to reach the same conversion at the lower temperature tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cantarella, M., Gallifuoco, A., Scardi, V., and Alfani, F. (1984), Ann. NY Acad. Sci. 434, 39–43.

    Article  PubMed  CAS  Google Scholar 

  2. Woodward, J. (1991), Biores. Technol. 36, 67–75.

    Article  CAS  Google Scholar 

  3. Aguado, J., Romero, M. D., Rodríguez, L., and Calles J. A. (1995), Biotechnol. Prog. 11, 104–106.

    Article  CAS  Google Scholar 

  4. Hsuanyu, Y. and Laidler, K. J. (1984), Can. J. Biochem. Cell. Biol. 63, 167–175.

    Google Scholar 

  5. Gong, C.-S., Ladisch, M. R., and Tsao, G. T. (1977), Biotechnol. Bioeng. 19, 959–981.

    Article  PubMed  CAS  Google Scholar 

  6. Woodward, J. and Capps, K. M. (1992). Appl. Biochem. Biotechnol. 34/35, 341–347.

    Google Scholar 

  7. Dixon, M. and Webb, E. C. (1979), Enzymes, 3rd ed., Longman Group Limited, London, pp. 7–15, 127.

    Google Scholar 

  8. Trinder, P. (1969), Ann. Clin. Biochem. 6, 24–27.

    CAS  Google Scholar 

  9. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  10. Morita, T. and Assumpção, R. M. V. (1972), Manual de Soluções reagentes e solventes— padronização—preparação—purificação, 2nd ed. Edgard Blücher Ltda, São Paulo, pp. 272–275.

    Google Scholar 

  11. Chaplin, M. F. and Bucke, C. (1992), Enzyme Technology, Cambridge University Press, Cambridge, pp. 18–23.

    Google Scholar 

  12. Segel, I. H. (1975), Enzyme Kinetics, Wiley, New York, pp. 18–24.

    Google Scholar 

  13. Haldane, J. B. S. (1930), Enzymes, Longman, Green and Co., London, p. 83.

    Google Scholar 

  14. Woodward, J., Koran, L. J., Jr., Hernandez, L. J., and Stephan, L. M. (1993), ACS Symposium Series 533, 240–250.

    Article  Google Scholar 

  15. Dekker, R. F. H. (1986), Biotechnol. Bioeng. 28, 1438–1442.

    Article  CAS  Google Scholar 

  16. Beltrame, P. L., Carniti, P., Focher, B., Marzetti, A., and Sarto, V. (1983), La Chimica e L'Industria 65(6), 398–401.

    CAS  Google Scholar 

  17. Alfani, F., Cantarella, L., Gallifuoco, A., Pezzullo, L., Scardi, V., and Cantarella, M. (1987), Ann. NY Acad. Sci. 503–507.

  18. Maguire, R. J. (1977), Can. J. Biochem. 55, 19–26.

    PubMed  CAS  Google Scholar 

  19. Bisset, F. and Sternberg, D. (1978), Appl. Environ. Microbiol. 35(4), 750–755.

    Google Scholar 

  20. Sundstrom, D. W., Klei, H. E., Coughlin, R. W., Biederman, G. J., and Brouwer, C. A. (1981), Biotechnol. Bioeng. 23, 473–485.

    Article  CAS  Google Scholar 

  21. Zanin, G. M. and Moraes, F. F. de. (1998), Appl. Biochem. Biotechnol. 70/72, pp. 383–394.

    Article  Google Scholar 

  22. Bassetti, F. J., Bergamasco, R., Moraes, F. F. de., and Zanin, G. M. (1997). in Trabajos Present adosler Congresso de Ingenieria de Procesos del Mercosur, Bahia Blanca-Argentina, pp. 233–234.

  23. Zanin, G. M. and Moraes, F. F. de. (1996), Appl. Biochem. Biotechnol. 57/58, 617–625.

    Article  CAS  Google Scholar 

  24. Grous, W., Converse, A., Grethlein, H., and Lynd, L. (1985), Biotechnol. Bioeng. 27, 463–470.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisella M. Zanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calsavara, L.P.V., De Moraes, F.F. & Zanin, G.M. Modeling cellobiose hydrolysis with integrated kinetic models. Appl Biochem Biotechnol 79, 789–806 (1999). https://doi.org/10.1385/ABAB:79:1-3:789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:79:1-3:789

Index entries

Navigation