Skip to main content
Log in

Lignin peroxidase and protease production by Streptomyces viridosporus T7A in the presence of calcium carbonate

Nutritional and regulatory carbon sources

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces are good producers of enzymes of industrial interest, such as lignin peroxidase (LiP) and proteases. To optimize production of these enzymes by Streptomyces viridosporus T7A, two parameters were evaluated: carbon sources and calcium carbonate. Shake-flask fermentations were performed using culture media, with and without CaCO3, contained yeast extract, mineral salts and either glucose, lactose, galactose, or corn oil. In the absence of calcium carbonate, the maximum values for LiP and protease activities occurred during the idiophase with LiP activity being favored by glucose, corn oil, and galactose, and protease activity being favored only by corn oil. Calcium carbonate affected the cell morphology by reducing the size of the pellets. Moreover, in the presence of the salt, LiP production was growth-associated in all media but the glucose medium. Higher enzyme levels were observed when galactose and glucose were used as carbon sources. Protease activity was repressed by both glucose and galactose, whereas corn oil was the best carbon source for the enzyme production. Calcium carbonate increased LiP production by up to 2.6-fold. Such improvement was not observed for protease production, suggesting a selective effect of CaCO3 on LiP activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilbert, M., Morosoli, R., Shareck, F., and Kluepfel, D. (1995), CRC Crit. Rev. Biotechnol. 15(1), 13–39.

    CAS  Google Scholar 

  2. Peczynska-Czoch, W. and Mordaski, M. (1988), in Actinomycetes in Biotechnology, Academic, San Diego, p. 219.

    Google Scholar 

  3. Eriksson, K.-E.L. (1993), J. Biotechnol. 30, 149–158.

    Article  PubMed  CAS  Google Scholar 

  4. Zimmerman, W. (1990), J. Biotechnol. 53, 119–130.

    Article  Google Scholar 

  5. Odier, E. and Artaud, I. (1992), in Microbial Degradation of Natural Products, Winkelmann, G., ed., VHC, Germany, pp. 161–191.

    Google Scholar 

  6. Schoemaker, H. E. and Leisola, M. S. A. (1990), J. Biotechnol. 13, 101–109.

    Article  CAS  Google Scholar 

  7. Ramachandra, M., Crawford, D. L., and Hertel, G. (1988), Appl. Environ. Microbiol. 54, 3057–3064.

    PubMed  CAS  Google Scholar 

  8. Yee, D. C. and Wood, T. K. (1997), Biotechnol. Prog. 13(1), 53–59.

    Article  PubMed  CAS  Google Scholar 

  9. Pasti-Grigsby, M. B., Lewis, T. A., Crawford, D. L., and Crawford, R. L. (1996), Appl. Environ. Microbiol. 62(3), 1120–1123.

    PubMed  CAS  Google Scholar 

  10. Goszczynski, S., Paszczynski, A., Pasti-Grigsby, M. B., Crawford, R. L., and Crawford, D. L. (1994), J. Bacteriol. 176, 1339–1347.

    PubMed  CAS  Google Scholar 

  11. Pasti-Grigsby, M. B., Paszcaynski, A., Goszczynski, S., Crawford, D. L., and Crawford, R. L. (1992), Appl. Environ. Microbiol. 58, 3605–3613.

    PubMed  CAS  Google Scholar 

  12. Spiker, J. K., Crawford, D. L., and Thiel, E. C. (1992), Appl. Microbiol. Biotechnol. 37, 518–523.

    Article  CAS  Google Scholar 

  13. Ishida, A., Futamura, N., and Matsusaka, T. (1987), J. Gen. Appl. Microbiol. 33, 27–32.

    CAS  Google Scholar 

  14. Pasti, M. B., Hagen, S. R., Korus, R. A., and Crawford, D. L. (1991), Appl. Microbiol. Biotechnol. 34, 661–667.

    Article  CAS  Google Scholar 

  15. Lodha, S. J., Korus, R. A., and Crawford, D. L. (1991), Appl. Biochem. Biotechnol. 28/29, 411–420.

    Article  Google Scholar 

  16. Yee, D. E., Jahng, D., and Wood, T. K. (1996), Biotechnol. Prog. 12, 40–46.

    Article  CAS  Google Scholar 

  17. Pasti, M. B., Pometto, A. L., III, Nuti, M. P., and Crawford, D. L. (1990), Appl. Environ. Microbiol. 56, 2213–2218.

    PubMed  CAS  Google Scholar 

  18. Zerbini, J. E. (1994), M.Sc. thesis, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.

  19. Hopwood, D. A., Bibb, M. B., Chater, K. F., Kieser, T., Bruton, C. J., Kieser, H. M., Lydiate, D. J., Smith, C. P., Ward, J. M., and Schrempf, H. (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual, The John Innes Foudation, Norwich, CT, pp. 3–5.

    Google Scholar 

  20. Zippel, M. and Neigenfind, M. (1988), J. Gen. Appl. Microbiol. 34, 7–14.

    CAS  Google Scholar 

  21. Peterson, G. L. (1983), Methods Enzymol. 91(12), 95–105.

    PubMed  CAS  Google Scholar 

  22. Charney, J. and Tomarelli, R. M. (1947), J. Biol. Chem. 171, 501–505.

    CAS  Google Scholar 

  23. Kunishima, N., Fukuyama, K., Matsubara, H., Hatanaka, H., Shibano, Y., and Arnachi, T. (1994) J. Mol. Biol. 235(1), 331–344.

    Article  PubMed  CAS  Google Scholar 

  24. Sundaramoorthy, M., Kishi, K., Fold, M. H., and Poulos, T. L. (1994), J. Biol. Chem. 269(52), 32,759–32,767.

    CAS  Google Scholar 

  25. Poulos, T. L., Edwards, S. L., Wariishi, H., and Gold, M. H. (1993), J. Biol. Chem. 268(6), 4429–4440.

    PubMed  CAS  Google Scholar 

  26. Nie, G. and Aust, S. D. (1997), Biochemistry 36(17), 5113–5119.

    Article  PubMed  CAS  Google Scholar 

  27. Nie, G. and Aust, S. D. (1997), Arch. Biochem. Biophys. 337(2), 225–231.

    Article  PubMed  CAS  Google Scholar 

  28. Demain, A. L. and Piret, J. M. (1991), in Genetics and Product Formation in Streptomyces, Plenum, New York, pp. 87–103.

    Google Scholar 

  29. Moncheva, P. A., Danova, S. T., Antonova S. K., and Ivanova, I. V. (1997), Antibiot. Khimioter. 42(9), 14–19.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elba P. S. Bon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macedo, J.M.B., Gottschalk, L.M.F. & Bon, E.P.S. Lignin peroxidase and protease production by Streptomyces viridosporus T7A in the presence of calcium carbonate. Appl Biochem Biotechnol 79, 735–744 (1999). https://doi.org/10.1385/ABAB:79:1-3:735

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:79:1-3:735

Index Entries

Navigation