Advertisement

Applied Biochemistry and Biotechnology

, Volume 78, Issue 1–3, pp 521–533 | Cite as

Biosorption of actinides from dilute waste actinide solution by egg-shell membrane

  • Shin-Ichi Ishikawa
  • Kyozo SuyamaEmail author
  • Isamu Satoh
Article

Abstract

Removal of radioactive elements from the effluent and waste aqueous solutions is an important problem. In previous laboratory batch experiments, hen egg-shell membrane (ESM) was stable as an insoluble protein and was very capable of binding heavy metal ions from aqueous solution. Batch laboratory pH profile, time dependency, and capacity experiments were performed to determine the binding of uranium (U) and thorium (Th) to ESM. Batch pH profile experiments indicated that the optimum pH for binding these actinides was approx 6.0 (U) or 3.0 (Th). The adsorption isotherms were developed at pH 5.0 (U) or 3.0 (Th) at 25°C, and the adsorption equilibrium data fitted both Langmuir and Freundlich models. The maximum uptakes by the Langmuir model were about 240 mg U/g and 60 mg Th/g dry weight ESM. In addition, their adsorption capacities increased as salt concentration increased. ESM could also accumulate uranium from dilute aqueous solution by adjusting to the optimum pH. These results showed that ESM was effective for removing actinides from solution and would be useful in filtration technology to remove actinides from aqueous solution.

Index Entries

Biosorption egg-shell membrane actinide uranium thorium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsezos, M., and Volesky, B. (1981), Biotechnol. Bioeng. 23, 583–604.CrossRefGoogle Scholar
  2. 2.
    Tsezos, M., and Volesky, B. (1982), Biotechnol. Bioeng. 24, 385–401.CrossRefGoogle Scholar
  3. 3.
    Tsezos, M., and Volesky, B. (1982), Biotechnol. Bioeng. 24, 955–969.CrossRefGoogle Scholar
  4. 4.
    Guibal, E., Roulph, C., and Le Cloirec, P. (1992), Wat. Res. 8, 1139–1145.CrossRefGoogle Scholar
  5. 5.
    Volesky, B. and May-Phillips, H. A. (1995), Appl. Microbiol. Biotechnol. 42, 797–806.CrossRefGoogle Scholar
  6. 6.
    Sagakuchi, T., Horikoshi, T., and Nakajima, A. (1981), Agric. Biol. Chem. 45, 2191–2195.Google Scholar
  7. 7.
    Betts, K. S. (1997), Environ. Sci. Technol./News 31, 263A.Google Scholar
  8. 8.
    Sagakuchi, T. and Nakajima, A. (1987), Sep. Sci. Technol. 22, 1609–1623.Google Scholar
  9. 9.
    Nakajima, A. and Sagakuchi, T. (1987), J. Chem. Technol. Biotechnol. 40, 223–232.Google Scholar
  10. 10.
    Suvama, K., Fukazawa, Y., and Umetsu, Y. (1994), Appl. Biochem. Biotechnol. 45–46, 871–879.Google Scholar
  11. 11.
    Ishikawa, S. and Suyama, K. (1998), Appl. Biochem. Biotechnol. 70–72, 719–728.Google Scholar
  12. 12.
    Suyama, K., Fukazawa, Y., and Suzumura, H. (1996), Appl. Biochem. Biotechnol. 57–58, 67–74.Google Scholar
  13. 13.
    Shumate, S. E., Strandberg, G. W., and Parrott, J. R., Jr. (1978), Biotechnol. Bioeng. Symp. 8, 13–20.Google Scholar
  14. 14.
    Sag, Y. and Kutsal, T. (1989), Biotechnol. Lett. 11, 141–144.CrossRefGoogle Scholar
  15. 15.
    Kutsal, T. and Sag, Y. (1995), Chem. Eng. J. 60, 181–188.Google Scholar
  16. 16.
    Nakajima, A. and Sakaguchi, T. (1993), Appl. Microbiol. Biotechnol. 38, 574–578.CrossRefGoogle Scholar
  17. 17.
    Sylva, R. N. and Davidson, M. R. (1979), J. Chem. Soc. Dalton 456–471.Google Scholar
  18. 18.
    Magini, M., Cabrini, A., Scibona, G., Johansson, G., and Sandström, M. (1976), Acta Chem. Scand. A 30, 437–447.Google Scholar
  19. 19.
    Galun, M., Keller, P., Malki, P., Feldstein, H., Galun, E., Siegal, S., et al. (1983), Water Air Soil Pollut 20, 222–232.Google Scholar
  20. 20.
    Faurest, E. and Roux, J.-C. (1992), Appl. Microbiol. Biotechnol. 37, 399–403.CrossRefGoogle Scholar
  21. 21.
    Holan, Z. R., Volesky, B., and Prasetyo, I. (1993), Biotechnol. Bioeng. 41, 819–825.CrossRefGoogle Scholar
  22. 22.
    Bengtsson, L., Johansson, B., Hackett, T. J., McHale, L., and McHale, A. P. (1995), Appl. Microbiol. Biotechnol. 42, 807–811.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Department of Applied Bioorganic Chemistry, Division of Life Science, Graduate School of Agriculture ScienceTohoku UniversitySendaiJapan
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations