Advertisement

Applied Biochemistry and Biotechnology

, Volume 78, Issue 1–3, pp 511–520 | Cite as

Bioconversion of fumarate to succinate using glycerol as a carbon source

  • Hwa-Won RyuEmail author
  • Kui-Hyun Kang
  • Jong-Sun Yun
Article

Abstract

In this study, a facultative bacterium that converts fumarate to succinate at a high yield was isolated. The yield of biocon version was enhanced about 1.2 times by addition of glucose into culture medium at an initial concentration of 6 g/L. When the initial cell density was high (2 g/L), the succinate produced at pH 7.0 for initial fumarate concentrations of 30, 50, 80, and 100 g/L were 29.3, 40.9, 63.6, and 82.5 g/L, respectively, showing an increase with the initial fumarate concentration. The high yield of 96.8%/mole of fumarate in just 4 h was obtained at the initial fumarate concentration of 30 g/L. Comparing these values to those obtained with low cell culture (0.2 g/L), we found that the amount of succinate produced was similar, but the production rate in the high cell culture was about three times higher than was the case in the low cell culture. This strain converted fumarate to succinate at a rate of 3.5 g/L·h under the sparge of CO2.

Index Entries

Bioconversion succinate fumarate Enterococcus sp. RKY1 fumarate reductase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Datta, R. (1992), US Patent, No 5, 143, 833 A.Google Scholar
  2. 2.
    Nakajima-Kambe, T., Nozue, T., Mukouyama, M., and Nakahara, T. (1997), J. Ferment. Bioeng. 84(2), 165–168.CrossRefGoogle Scholar
  3. 3.
    Asano, Y., Ueda, M., and Yamada, H. (1993), Appl. Environ. Microbiol. 59(4), 1110–1113.Google Scholar
  4. 4.
    Wang, X., Gong, C. S., and Tsao, G. T. (1996), Biotechnol Lett. 18(12), 1441–1446.CrossRefGoogle Scholar
  5. 5.
    Shigeno, T. and Nakahara, T. (1991), Biotechnol Lett. 13(6), 427–432.CrossRefGoogle Scholar
  6. 6.
    Suzuki, Y., Yasui, T., Mino, Y., and Abe, S. (1980), Eur. J. Appl. Microbiol. Biotechnol. 11, 23–27.CrossRefGoogle Scholar
  7. 7.
    Takamatsu, S., Umemura, I., Yamamoto, K., Sato, T., Tosa, T., and Chibata, I. (1982), Eur. J. Appl. Microbiol. Biotechnol. 15, 147–152.CrossRefGoogle Scholar
  8. 8.
    Goldberg, I., Lonberg-Holm, K., Bagley, E. A., and Stieglitz, B. (1983), Appl. Environ. Microbiol. 45(6), 1838–1847.Google Scholar
  9. 9.
    Sasaki Y., Takao, S., and Hotta, K. (1970), J. Ferment. Technol. 48, 782–786.Google Scholar
  10. 10.
    Takao, S. and Hotta, K. (1973), J. Ferment. Technol. 51, 19–25.Google Scholar
  11. 11.
    Miki, K. and Lin, E. C. C. (1973), J. Bacteriol. 114(2), 767–771.Google Scholar
  12. 12.
    Miller, G. L. (1959), Anal. Chem. 31(3), 426–428.CrossRefGoogle Scholar
  13. 13.
    Lehninger, A. L., Nelson, D. L., and Cox, M. M. (1993), Principles of Biochemistry, 2nd ed., Worth, New York.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Department of Biochemical EngineeringChonnam National UniversityKwangjuKorea
  2. 2.Department of Chemical EngineeringChonnam National UniversityKwangjuKorea
  3. 3.Department of Chemical TechnologyChonnam National UniversityKwangjuKorea

Personalised recommendations