Advertisement

Applied Biochemistry and Biotechnology

, Volume 78, Issue 1–3, pp 455–472 | Cite as

Bioconversion of mixed solids waste to ethanol

  • Quang A. Nguyen
  • Fred A. Keller
  • Melvin P. Tucker
  • Charles K. Lombard
  • Bryan M. Jenkins
  • David E. Yomogida
  • Valentino M. Tiangco
Article

Abstract

A mixed solids waste (MSW) feedstock, comprising construction lumber waste (35% oven-dry basis), alm ond treeprunings (20%), wheat straw (20%), office waste paper (12.5%), and newsprint (12.5%), was converted to ethanol via dilute-acid pretreatment followed by enzymatic hydrolysis and yeast fermentation. The MSW was pretreated with dilute sulfuricacid (0.4% w/w) at 210°C for 3 min in a 4-L stea mexplosion reactor, then washed with water to recover the solubilized hemicellulose. The digestibility of water-washed, pretreated MSW was 90% in batch enzymatic hydrolysis at 66 FPU/g cellulose. Using an enzyme-recycle bioreactor system, greater than 90% cellulose hydrolysis was achieved at a net enzyme loading of about 10 FPU/g cellulose. Enzyme recycling using mebrane filtration and a fed-batch fermentation technique is a promising option for significantly reducing the cost of enzyme in cellulose hydrolysis. The hexosesugars were readily fermentable using a Saccharomyces cerevisiae yeast strain that was adapted to the hydrolysate. Solid residue after enzyme digestion was subjected to various furnace experiments designed to assess the fouling and slagging characteristics. Results of these analyses suggest the residue to be of a low to moderate slagging and fouling type if burned by itself.

Index Entries

Biomass ethanol pretreament MSW bioconversion hydrolysis enzyme recycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wright, J. D., Wyman, C. E., and Grohman, K. (1988), Appl. Biochem. Biotechnol. 17/18, 75–90.Google Scholar
  2. 2.
    Nguyen, Q. A. and Saddler, J. N. (1991), Biores. Technol. 35, 275–282.CrossRefGoogle Scholar
  3. 3.
    Hinman, N. D., Schell, D. J., Riley, C. J., Bergerson, P. W., and Walter, P. J. (1992), Appl. Biochem. Biotechnol. 34/35, 639–649.Google Scholar
  4. 4.
    Henley, R. G., Yang, R. Y. K., and Greenfield, P. F. (1980), Enzyme Microb. Technol. 2, 206–208.CrossRefGoogle Scholar
  5. 5.
    Tan, U. L., Yu, E. K. C., Mayers, P., and Saddler, J. N. (1987), Appl. Microbiol. Biotechnol. 26, 21–27.CrossRefGoogle Scholar
  6. 6.
    Vallander, L. and Ericksson, K. E. (1987), Enzyme Microb. Technol. 9, 714–720.CrossRefGoogle Scholar
  7. 7.
    Mes-Hartree, M., Hogan, C. M., and Saddler, J. N. (1987), Biotechnol. Bioeng. 30, 558–564.CrossRefGoogle Scholar
  8. 8.
    Lee, J. M. and Wolf, J. H. (1988), Appl. Biochem. Biotechnol. 17/18, 203–215.Google Scholar
  9. 9.
    Tanaka, M., Fukui, M., and Matsuno, R. (1988), Biotechnol. Bioeng. 32, 897–902.CrossRefGoogle Scholar
  10. 10.
    Eklund, R., Galbe, M., and Zacchi, G. (1992), Appl. Biochem. Biotechnal. 34/35, 105–113.Google Scholar
  11. 11.
    Girard, D. J. and Converse, A. O. (1993), Appl. Biochem. Biotechnol. 39/40, 521–533.Google Scholar
  12. 12.
    Gregg, D. J. and Saddler, J. N. (1996), Biotechnol. Bioeng. 51, 375–383.CrossRefGoogle Scholar
  13. 13.
    TAPPI Test Methods (1991), T210 cm-86, Weighing, Sampling and Testing Pulp for Moisture, TAPPI, Atlanta, GA.Google Scholar
  14. 14.
    TAPPI Test Methods (1994–1995), T222 om-88, Acid-Insoluble Lignin in Wood and Pulp, TAPPI, Atlanta, GA.Google Scholar
  15. 15.
    Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J., Torget, R., and Graboski, M. (1984), Biotech. Bioeng. Symp. 14, p137.Google Scholar
  16. 16.
    Moore, W. E. and Johnson, D. B. (1967), Procedures forthe Chemical Analysis of Wood and Wood Products, Forest Products Laboratory, U. S. Department of Agriculture, Madison, WI.Google Scholar
  17. 17.
    TAPPI Test Methods (1991), T211 om-85, Ash in Wood and Pulp, TAPPI, Atlanta, GA.Google Scholar
  18. 18.
    Ehrman, C. I. and Himmel, M. E. (1994), Biotechnol. Tech. 87(2), 99–104.CrossRefGoogle Scholar
  19. 19.
    Jenkins, B. M., Bakker, R. R., and Wei, J. B. (1996), Biomass Bioenergy 10, 177–200.CrossRefGoogle Scholar
  20. 20.
    Iogen Cellulase Technical Data Sheet (1995), Effect of temperat ure on storage stability, Iogen, Ottawa, Ontario, Canada.Google Scholar
  21. 21.
    Reese, E. T. and Mandels, M. (1980), Biotechnol. Bioeng. 22, 323–335.CrossRefGoogle Scholar
  22. 22.
    Reese, E. T. and Ryu, D. Y. (1980), Enzyme Microb. Technol. 2, 239–240.CrossRefGoogle Scholar
  23. 23.
    Mukataka, S., Tada, M., and Takahashi, J. (1983), Ferment. Technol. 61, 615–621.Google Scholar
  24. 24.
    Nguven, Q. A. (1998), U.S. Patent No. 5,733,758.Google Scholar
  25. 25.
    Jenkins, B. M. and Ebling, J. M. (1985), Correlation of chemical and physical properties of terrestrial biomass with conversion, Energy from Biomass and Wastes IX, Institute of Gas Technology, Chicago, ILGoogle Scholar
  26. 26.
    Jenkins, B. M. (1989), in: Biomass Handbook, Kitani, O. and Hall, C. W., eds., Gordon and Breach Science Publishers, New York.Google Scholar
  27. 27.
    Jenkins, B. M. (1993), in: Biomass Energy Fundamentals: Vol. 2: Appendices, Final Report, Electric Power Research Institute, Wiltsee, G., ed., TR-102107, Research Project 3295-01.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Quang A. Nguyen
    • 1
  • Fred A. Keller
    • 1
  • Melvin P. Tucker
    • 1
  • Charles K. Lombard
    • 2
  • Bryan M. Jenkins
    • 3
  • David E. Yomogida
    • 3
  • Valentino M. Tiangco
    • 4
  1. 1.National Renewable Energy LaboratoryGolden
  2. 2.Waste Energy Integrated SystemsPalo Alto
  3. 3.Biological and Agricultural EngineeringUniversity of CaliforniaDavis
  4. 4.California Energy CommissionSacramento

Personalised recommendations