Skip to main content
Log in

Bioconversion of mixed solids waste to ethanol

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A mixed solids waste (MSW) feedstock, comprising construction lumber waste (35% oven-dry basis), alm ond treeprunings (20%), wheat straw (20%), office waste paper (12.5%), and newsprint (12.5%), was converted to ethanol via dilute-acid pretreatment followed by enzymatic hydrolysis and yeast fermentation. The MSW was pretreated with dilute sulfuricacid (0.4% w/w) at 210°C for 3 min in a 4-L stea mexplosion reactor, then washed with water to recover the solubilized hemicellulose. The digestibility of water-washed, pretreated MSW was 90% in batch enzymatic hydrolysis at 66 FPU/g cellulose. Using an enzyme-recycle bioreactor system, greater than 90% cellulose hydrolysis was achieved at a net enzyme loading of about 10 FPU/g cellulose. Enzyme recycling using mebrane filtration and a fed-batch fermentation technique is a promising option for significantly reducing the cost of enzyme in cellulose hydrolysis. The hexosesugars were readily fermentable using a Saccharomyces cerevisiae yeast strain that was adapted to the hydrolysate. Solid residue after enzyme digestion was subjected to various furnace experiments designed to assess the fouling and slagging characteristics. Results of these analyses suggest the residue to be of a low to moderate slagging and fouling type if burned by itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wright, J. D., Wyman, C. E., and Grohman, K. (1988), Appl. Biochem. Biotechnol. 17/18, 75–90.

    Google Scholar 

  2. Nguyen, Q. A. and Saddler, J. N. (1991), Biores. Technol. 35, 275–282.

    Article  CAS  Google Scholar 

  3. Hinman, N. D., Schell, D. J., Riley, C. J., Bergerson, P. W., and Walter, P. J. (1992), Appl. Biochem. Biotechnol. 34/35, 639–649.

    Google Scholar 

  4. Henley, R. G., Yang, R. Y. K., and Greenfield, P. F. (1980), Enzyme Microb. Technol. 2, 206–208.

    Article  CAS  Google Scholar 

  5. Tan, U. L., Yu, E. K. C., Mayers, P., and Saddler, J. N. (1987), Appl. Microbiol. Biotechnol. 26, 21–27.

    Article  CAS  Google Scholar 

  6. Vallander, L. and Ericksson, K. E. (1987), Enzyme Microb. Technol. 9, 714–720.

    Article  CAS  Google Scholar 

  7. Mes-Hartree, M., Hogan, C. M., and Saddler, J. N. (1987), Biotechnol. Bioeng. 30, 558–564.

    Article  CAS  Google Scholar 

  8. Lee, J. M. and Wolf, J. H. (1988), Appl. Biochem. Biotechnol. 17/18, 203–215.

    Google Scholar 

  9. Tanaka, M., Fukui, M., and Matsuno, R. (1988), Biotechnol. Bioeng. 32, 897–902.

    Article  CAS  Google Scholar 

  10. Eklund, R., Galbe, M., and Zacchi, G. (1992), Appl. Biochem. Biotechnal. 34/35, 105–113.

    Google Scholar 

  11. Girard, D. J. and Converse, A. O. (1993), Appl. Biochem. Biotechnol. 39/40, 521–533.

    Google Scholar 

  12. Gregg, D. J. and Saddler, J. N. (1996), Biotechnol. Bioeng. 51, 375–383.

    Article  CAS  Google Scholar 

  13. TAPPI Test Methods (1991), T210 cm-86, Weighing, Sampling and Testing Pulp for Moisture, TAPPI, Atlanta, GA.

  14. TAPPI Test Methods (1994–1995), T222 om-88, Acid-Insoluble Lignin in Wood and Pulp, TAPPI, Atlanta, GA.

  15. Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J., Torget, R., and Graboski, M. (1984), Biotech. Bioeng. Symp. 14, p137.

    Google Scholar 

  16. Moore, W. E. and Johnson, D. B. (1967), Procedures forthe Chemical Analysis of Wood and Wood Products, Forest Products Laboratory, U. S. Department of Agriculture, Madison, WI.

    Google Scholar 

  17. TAPPI Test Methods (1991), T211 om-85, Ash in Wood and Pulp, TAPPI, Atlanta, GA.

  18. Ehrman, C. I. and Himmel, M. E. (1994), Biotechnol. Tech. 87(2), 99–104.

    Article  Google Scholar 

  19. Jenkins, B. M., Bakker, R. R., and Wei, J. B. (1996), Biomass Bioenergy 10, 177–200.

    Article  CAS  Google Scholar 

  20. Iogen Cellulase Technical Data Sheet (1995), Effect of temperat ure on storage stability, Iogen, Ottawa, Ontario, Canada.

  21. Reese, E. T. and Mandels, M. (1980), Biotechnol. Bioeng. 22, 323–335.

    Article  CAS  Google Scholar 

  22. Reese, E. T. and Ryu, D. Y. (1980), Enzyme Microb. Technol. 2, 239–240.

    Article  CAS  Google Scholar 

  23. Mukataka, S., Tada, M., and Takahashi, J. (1983), Ferment. Technol. 61, 615–621.

    CAS  Google Scholar 

  24. Nguven, Q. A. (1998), U.S. Patent No. 5,733,758.

  25. Jenkins, B. M. and Ebling, J. M. (1985), Correlation of chemical and physical properties of terrestrial biomass with conversion, Energy from Biomass and Wastes IX, Institute of Gas Technology, Chicago, IL

    Google Scholar 

  26. Jenkins, B. M. (1989), in: Biomass Handbook, Kitani, O. and Hall, C. W., eds., Gordon and Breach Science Publishers, New York.

    Google Scholar 

  27. Jenkins, B. M. (1993), in: Biomass Energy Fundamentals: Vol. 2: Appendices, Final Report, Electric Power Research Institute, Wiltsee, G., ed., TR-102107, Research Project 3295-01.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang A. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, Q.A., Keller, F.A., Tucker, M.P. et al. Bioconversion of mixed solids waste to ethanol. Appl Biochem Biotechnol 78, 455–472 (1999). https://doi.org/10.1385/ABAB:78:1-3:455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:78:1-3:455

Index Entries

Navigation