Advertisement

Applied Biochemistry and Biotechnology

, Volume 78, Issue 1–3, pp 409–419 | Cite as

Simultaneous saccharification and extractive fermentation of lignocellulosic materials into lactic acid in a two-zone fermentor-extractor system

  • Prashant V. Iyer
  • Y. Y. LeeEmail author
Article

Abstract

Simultaneous saccharification and extractive fermentation of lignocellulosic materials into lactic acid was investigated using a two-zone bioreactor. The system is composed of an immobilized cell reactor, a separate column reactor containing the lignocellulosic substrate and a hollow-fiber membrane. It is operated by recirculating the cell free enzyme (cellulase) solution from the immobilized cell reactor to the column reactor through the membrane. The enzyme and microbial reactions thus occur at separate locations, yet simultaneously. This design provides flexibility in reactor operation as it allows easy separation of the solid substrate from the microorganism, in situ removal of the product and, if desired, different temperatures in the two reactor sections. This reactor system was tested using pretreated switchgrass as the substrate. It was operated under a fed-batch mode with continuous removal of lactic acid by solvent extraction. The overall lactic acid yield obtainable from this bioreactor system is 77% of the theoretical.

Index Entries

Lactic acid SSF cell immobilization switchgrass in situ extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vick-Rov, T. B. (1985), in Comprehensive Biotechnology: Lactic Acid, vol. 3, Moo-Young, M., ed., Pergamon, Oxford, UK, pp. 716–774.Google Scholar
  2. 2.
    Holten, C., Muller, H. A., and Rehlbinder, D. (1971), Properties and Chemistry of Lactic Acid and Derivatives, Verlag Chemie, Weinheim.Google Scholar
  3. 3.
    Litchfield, J. H. (1996), Adv. Appl. Microbiol. 42, 45–96.Google Scholar
  4. 4.
    Luedeking, R. and Piret, E. L. (1959), J. Biochem. Microbial. Technol. Eng. 1, 431–459.CrossRefGoogle Scholar
  5. 5.
    Goncalves, L. M. D., Xavier, A. M. R. B., and Almeida, J. S. (1991), Enzyme Microb. Technol. 13, 311–319.CrossRefGoogle Scholar
  6. 6.
    Evangelista, R. L., Mangold, A. J., and Nikolov, Z. L. (1994), Appl. Biochem. Biotechnol. 45, 131–144.Google Scholar
  7. 7.
    Bassham, J. A. (1975), Biotechnol. Bioeng. Symp. 5, 9.Google Scholar
  8. 8.
    Takagi, M., Abe, S., Suzuki, S., Emert, G. H., and Yata, N. (1977), in Proceedings of the Bioconversion Symposium, Ghose, T. K., ed., IIT, Delhi, 551.Google Scholar
  9. 9.
    Ghosh, P., Pamment, N. B., and Martin, W. R. B. (1982), Enzyme Microb. Technol. 4, 425.CrossRefGoogle Scholar
  10. 10.
    Takagi, M. (1984), Biotechnol. Bioeng. 16, 1506–1507.CrossRefGoogle Scholar
  11. 11.
    Yeh, P. L. H., Bajpai, R. K., and Ionnotti, E. L. (1991), J. Fermentation Bioeng. 71, 75–77.CrossRefGoogle Scholar
  12. 12.
    Daugulis, A. J. (1988), Biotechnol. Prog. 4, 113.Google Scholar
  13. 13.
    Lewis, P. V. and Yang, S. (1992), Biotechnol. Prog. 8, 104.CrossRefGoogle Scholar
  14. 14.
    Iyer, P. V., Wu, Z. W., Kim, S. B., and Lee, Y. Y. (1996), Appl. Biochem. Biotechnol. 57/58, 121–132.Google Scholar
  15. 15.
    Scott, C. D. (1987), Ann. NY Acad. Sci. 501, 487–493.CrossRefGoogle Scholar
  16. 16.
    Chen, R. F. and Lee, Y. Y. (1997), Appl. Biochem. Biotechnol. 63/65, 435–448.Google Scholar
  17. 17.
    Kaufman, E. N., Cooper, S. P., Clement, S. L., and Little, M. H. (1995), Appl. Biochem. Biotechnol. 51, 605–620.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentAuburn UniversityAuburn

Personalised recommendations