Advertisement

Applied Biochemistry and Biotechnology

, Volume 78, Issue 1–3, pp 373–388 | Cite as

Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33)

  • Mahesh S. KrishnanEmail author
  • Nancy W. Y. Ho
  • George T. Tsao
Article

Abstract

Fermentation kinetics of ethanol production from glucose, xylose, and their mixtures using a recombinant Saccharomyces 1400 (pLNH33) are reported. Single-substrate kinetics indicate that the specific growth rate of the yeast and the specific ethanol productivity on glucose as the substrate was greater than on xylose as a substrate. Ethanol yields from glucose and xylose fermentation were typically 95 and 80% of the theoretical yield, respectively. The effect of ethanol inhibition is more pronounced for xylose fermentation than for glucose fermentation. Studies on glucose-xylose mixtures indicate that the recombinant yeast co-ferments glucose and xylose. Fermentation of a 52.8 g/L glucose and 56.3 g/L xylose mixture gave an ethanol concentration of 47.9 g/L after 36 h. Based on a theoretical yield of 0.51 g ethanol/g sugars, the ethanol yield from this experiment (for data up to 24 h) was calculated to be 0.46 g ethanol/g sugar or 90% of the theoretical yield. The specific growth rate of the yeast on glucose-xylose mixtures was found to lie between the specific growth rate on glucose and the specific growth rate on xylose. Kinetic studies were used to develop a fermentation model incorporating the effects of substrate inhibition, product inhibition, and inoculum size. Good agreements were obtained between model predictions and experimental data from batch fermentation of glucose, xylose, and their mixtures.

Index Entries

Recombinant Saccharomyces 1400(pLNH33) ethanol xylose fermentation kinetic model 

Nomenclature

Ks

Monod constant, for growth on glucose or xylose (g/L)

K′s

Monod constant, for product formation from glucose or xylose (g/L)

Kf

Inhibition constant, for growth on glucose or xylose (g/L)

K′i

Inhibition constant for product formation from glucose or xylose (g/L)

m

maintenance coefficient (/h)

P

ethanol concentration (g/L)

Pw

ethanol concentration above which cells do not grow (g/L)

P2N

ethanol concentration above which cells do not produce ethanol (g/L)

S

substrate concentration (g/L)

X

cell dry weight (g/L)

Yp/s

product yield constant (g-product/g-substrate)

YX/xyl

cell yield constant from glucose (g-cells/g-substrate)

YX/xyl

cell yield constant from xylose (g-cells/g-substrate)

Greek Letters

μ

specific growth rate (/h)

v

specific rate of product formation (/h)

μm

maximum specific growth rate (/h)

VIN

maximum specific rate of product formation (/h)

μ0

specific growth rate when no initial ethanol is present (/h)

V0

specific rate of product formation when no initial ethanol is present (/h)

β/f

constants in product inhibition model (dimensionless)

Subscripts

g

glucose

x

xylose

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lynd, L.R., Cushman, J.H., Nichols, R.J., and Wyman, C.E. (1991), Science 51, 1318–1323.CrossRefGoogle Scholar
  2. 2.
    Schneider, H. (1989), Crit. Rev. Biotechnol. 9, 1–40.Google Scholar
  3. 3.
    Ladisch, M. R., Lin, K. W., Voloch, M., and Tsao, G. T. (1983), Enzyme Microb. Technol. 5, 82–102.CrossRefGoogle Scholar
  4. 4.
    Burchhardt, G. and Ingram, L. O. (1992), Appl. Environ. Microbiol. 58, 1128–1133.Google Scholar
  5. 5.
    Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W., and Preston, J.F. (1987), Appl. Environ. Microbiol. 53, 2420–2425.Google Scholar
  6. 6.
    Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T., and Ingram, L.O. (1991), Appl. Environ. Microbiol. 57, 893–900.Google Scholar
  7. 7.
    Doran, J.B., Aldrich, H.C., and Ingram, L.O. (1994), Biotechnol. Bioeng. 44, 240–247.CrossRefGoogle Scholar
  8. 8.
    Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T., and Ingram, L.O. (1991), Appl. Environ. Microbiol. 57, 2810–2815.Google Scholar
  9. 9.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995), Science 267, 240–243.CrossRefGoogle Scholar
  10. 10.
    Kotter, P., Amore, R., Hollenberg, C.P., and Ciriacy, M. (1993), Curr. Genet. 38, 776–783.Google Scholar
  11. 11.
    Tantirungkij, M., Nakashima, N., Seki, T., and Yoshida, T. (1993), J. Ferm. Bioeng., 75, 83–88.CrossRefGoogle Scholar
  12. 12.
    Ho, N.W.Y., Chen, Z., and Brainard, A. (1998), Appl. Environ. Microbiol. 64(3), 1852–1859.Google Scholar
  13. 13.
    Stewart, G.G., Panchal, C.J., and Rusell, I. (1982), Brew. Distill. Int. 12, 33.Google Scholar
  14. 14.
    Ho, N.W.Y. and Chen, Z.D. (1996), Patent pending.Google Scholar
  15. 15.
    Toon, S.T., Philippidis, G.P., Ho, N.W.Y., Chen, Z.D., Brainard, A., Lumpkin, R.E., and Riley, C.J. (1997), Appl. Biochem. Biotechnol. 63/65, 243–255.Google Scholar
  16. 16.
    Mulchandani, A. and Loung, J.H.T. (1989), Enzyme Microb. Technol. 11, 66–73.CrossRefGoogle Scholar
  17. 17.
    van Uden, N. (1989), Alcohol Toxicity in Yeasts and Bacteria: CRC Press, Boca Raton, FL.Google Scholar
  18. 18.
    Luong, J.H.T. (1985), Biotechnol. Bioeng. 22, 1671–1687.Google Scholar
  19. 19.
    Krishnan, M.S., Xia, Y., Ho, N.W.Y., and Tsao, G.T. (1997), ACS Symposium Series: Fuels and Chemicals from Biomass vol. 666, pp. 74–92.Google Scholar
  20. 20.
    Krishnan, M.S., Xia, Y., Tsao, G.T., Kasthurikrishnan, N., Srinivasan, N., and Cooks, R.G. (1995), Appl. Biochem. Biotechnol. 51/52, 479–493.Google Scholar
  21. 21.
    Krishnan, M.S., Du, J.X., Cao, N.J., Gong, C.S., and Tsao, G.T. (1997), Poster 239-BIOT at the 213th ACS National Meeting, April 13–17, San Francisco, CA.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Mahesh S. Krishnan
    • 1
    Email author
  • Nancy W. Y. Ho
    • 1
  • George T. Tsao
    • 1
  1. 1.Laboratory of Renewable Resources EngineeringPurdue UniversityWest Lafayette

Personalised recommendations