Applied Biochemistry and Biotechnology

, Volume 77, Issue 1–3, pp 55–65 | Cite as

Two high-throughput techniques for determining wood properties as part of a molecular genetics analysis of hybrid poplar and loblolly pine

  • Gerald Tuskan
  • Darrell West
  • Harvey D. Bradshaw
  • David Neale
  • Mitch Sewell
  • Nick Wheeler
  • Bob Megraw
  • Keith Jech
  • Art Wiselogel
  • Robert Evans
  • Carolyn Elam
  • Mark Davis
  • Ron Dinus
Article

Abstract

Two new high-through put techniques, computer tomography X-ray densitometry (CT scan) and pyrolysis molecular beam mass spectrometry (pyMBMS), coupled with quantitative trait loci (QTL) analysis, were tested as a means to overcome the time and cost associated with conventional characterization of biomass feedstock components. Applications of these two techniques were evaluated using hybrid poplar for the CT scan and loblolly pine for the pyMBMS. Segregating progeny from hybrid poplar varied in specific gravity, with individual mean estimates ranging from 0.21–0.41. Progeny from loblolly pine varied in lignin, α cellulose, and mannan contents, with individual mean estimates of lignin content ranging from 28.7–33.1%, α cellulose content from 28.8–43.5% and mannan content from 4.2–10.1%. QTL analysis of the loblolly pine data suggested that eleven QTLs were associated with individual feedstock characteristics and that two QTLs for several feedstock components were linked to the same position on the loblolly pine genetic map. Each QTL individually accounted for 7–13% of the total phenotypic variation in associated loblolly pine feedstock components.

Index entries

Pyrolysis molecular beam mass spectrometry computer tomography genetic markers QTL lignin cellulose hemicellulose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smook, G. A. and Kocurek, M. J. (1988), Handbook for Pulp and Paper Technologists. TAPPI, Atlanta, GA.Google Scholar
  2. 2.
    Duff, S. J. B. and Murray, W. D. (1996), Biores. Technol. 55, 1–33.CrossRefGoogle Scholar
  3. 3.
    Dinus, R. J., Dimmel, D. R., Feirer, R. P., Johnson, M. A., and Malcolm, E. W. (1990), ORNL Report, 88-SC006, U. S. Government Press (available through National Technical Information Service U.S. Department of Commerce), Oak Ridge, TN.Google Scholar
  4. 4.
    Zobel, B. J. and Jett, J. B. (1997), Genetics of Wood Production, Springer-Verlag, New York.Google Scholar
  5. 5.
    Williams, C. G. and Neale, D. B. (1992), Can. J. For. Res. 22, 1009–1017.CrossRefGoogle Scholar
  6. 6.
    Agblevor, F. A., Evans, R. J., and Johnson, K. D. (1994), J. Anal. Appl. Pyrolysis 30, 125–144.CrossRefGoogle Scholar
  7. 7.
    Windig W., Heckler, C. E., Agblevor, F. A., and Evans, R. J. (1992), Chemometr. Intell. Lab. Syst. 14, 195–207.CrossRefGoogle Scholar
  8. 8.
    Windig, W., Meuzelarr H. L. C., Shafizadeh, F., and Kelsey, R. G. (1984), J. Anal. Appl. Pyrolysis 6, 233–250.CrossRefGoogle Scholar
  9. 9.
    Martens, H. and Naes, T. (1989), Multivariate Calibration, Wiley, New York.Google Scholar
  10. 10.
    Williams, C. G. and Megraw, R. A. (1994), Can. J. For. Res. 24, 714–722.Google Scholar
  11. 11.
    Core, H. A., Cote, W. A., and Day, A. C. (1979), Wood Structure and Function, Syracuse University Press, Syracuse, NY, pp. 72–75.Google Scholar
  12. 12.
    Elliott, J. C., Anderson, P., Davis, G. R., and Leng, F. S. (1994), JOM 43, 11–19.Google Scholar
  13. 13.
    Davis, M. F., Johnson, D. K., Agblevor, F., Fennell, J., and Ashley, P. (1995), Proceedings of the 2nd Biomass Conference of the Americas, NREL/CP-200-8098, Golden, CO, pp. 216–225.Google Scholar
  14. 14.
    Lapierre, C., Pollet, B., and Rolando, C. (1995), New insights into the molecular architecture of hardwood lignin. Res. Chem. Intermediates 21, 397–412.CrossRefGoogle Scholar
  15. 15.
    Haley, C. S. and Knott, S. A. (1992), Heredity 69, 315–324.Google Scholar
  16. 16.
    Knott, S. A. (1997), TAG 94, 810–820.CrossRefGoogle Scholar
  17. 17.
    Haley, C. S., Knott, S. A., and Elsen, J. M. (1994), Genetics 136, 1195–1207.Google Scholar
  18. 18.
    Lander, S. and Kruglyak, D. (1995), Nat. Genet. 11, 241–247.CrossRefGoogle Scholar
  19. 19.
    Sewell, M., Sherman, B. K., and Neale, D. B. (1999), Genetics, in press.Google Scholar
  20. 20.
    Goyal, G. C., Fisher, J. J., Krohon, M. J., Packwood, R. E., and Olson, J. R. (1997), TAPPI Proceedings, TAPPI Press, Atlanta, GA, pp. 857–862.Google Scholar
  21. 21.
    Fengal, D. and Wegener, G. (1984), Wood: Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, p. 59.Google Scholar
  22. 22.
    Browning, B. L. (1975), In, The Chemistry of Wood, Krieger, R. E., ed., Huntington, NY, p. 67.Google Scholar
  23. 23.
    Sjöström, E. (1981), Wood Chemistry, Fundamentals and Applications, Academic, New York, p. 66.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Gerald Tuskan
    • 1
  • Darrell West
    • 1
  • Harvey D. Bradshaw
    • 2
  • David Neale
    • 3
  • Mitch Sewell
    • 3
  • Nick Wheeler
    • 4
  • Bob Megraw
    • 4
  • Keith Jech
    • 4
  • Art Wiselogel
    • 5
  • Robert Evans
    • 5
  • Carolyn Elam
    • 5
  • Mark Davis
    • 5
  • Ron Dinus
    • 6
  1. 1.Oak Ridge National LaboratoryOak Ridge
  2. 2.University of WashingtonSeattle
  3. 3.U. S. Forest ServiceDavis
  4. 4.Weyerhaeuser CompanyCentralia
  5. 5.National Renewable Energy LaboratoryGolden
  6. 6.University of British ColumbiaCanada

Personalised recommendations