Advertisement

Applied Biochemistry and Biotechnology

, Volume 77, Issue 1–3, pp 293–309 | Cite as

Enzyme production, growth, and adaptation of T. reesei strains QM9414, L-27, RL-P37, and rut C-30 to conditioned yellow poplar sawdust hydrolysate

Scientific note
  • Tammy Kay Hayward
  • Jenny Hamilton
  • David Templeton
  • Ed Jennings
  • Mark Ruth
  • Arun Tholudur
  • James D. McMillan
  • Mel Tucker
  • Ali Mohagheghi
Article

Abstract

National Renewable Energy Laboratory (NREL) has developed a conditioning process that decreases acetic acid levels in pretreated yellow poplar hydrolysate. Trichoderma reesei is sensitive to acetic acid and this conditioning method has enabled applied cellulase production with hardwoods. T. reesei strains QM9414, L-27, RL-P37, and Rut C-30 were screened for growth on conditioned hydrolysate liquor. Tolerance to hydrolysate was found to be strain-dependent. Strain QM9414 was adapted to grow in 80% (v/v) conditioned hydrolysate (40 g/L of soluble sugars and 1.6 g/L acetic acid from pretreated poplar). However, enzyme production was highest at 20% (v/v) hydrolysateusing strain L-27. Cellulasetiters of 2–3 International Filter Paper Units (IFPU)/mL were achieved using pretreated yellow poplar liquors and solids as the sole carbon sources.

Index Entries

Cellulase pretreated poplarhydrolysate Trichoderma reesei furfural acetic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vinzant, T. B., Adney, W. S., Decker, S. R., Baker, J. O., Himmel, and M. E. (1998), Poster, 20th Symposium on Biotechnology for Fuels and Chemicals, Humana Press, Totowa, NJ.Google Scholar
  2. 2.
    Szengyel, Z., Zacchi, G., and Reczey, K. (1997), Appl. Biochem. Biotech. 63/65, 351–362.CrossRefGoogle Scholar
  3. 3.
    Ranatunga, T., Jervis, J., Helm, R., McMillan, J. D., and Hatzic, C. (1997), Appl. Biochem. Biotech. 67, 185–198.Google Scholar
  4. 4.
    Tatsumoto, K., Baker, J. O., Tucker, M. P., OH, K. K., Mohaghegi, A., Grohmann K., and Himmel, M. E. (1988), Appl. Biochem. Biotech. 18, 159–174.Google Scholar
  5. 5.
    Hendy, N. A., Wilke, C. R., and Blanch, H. W. (1984), Enzyme Microb. Technol. 6, 73–77.CrossRefGoogle Scholar
  6. 6.
    McMillan J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, American chemical Society, Washington, DC, pp. 411–437.Google Scholar
  7. 7.
    Kadam, K. L. (1996), in Handbook on Bioethanol: Production and Utilization, Wyman, C. E., ed., Taylor & Francis, Washington, DC, pp. 213–252.Google Scholar
  8. 8.
    Mohagheghi, A., Grohmann, K., and Wyman, C. E. (1988), Appl. Biochem. Biotechnol. 17, 263–277.Google Scholar
  9. 9.
    Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.Google Scholar
  10. 10.
    Gracheck, S. J., Rivers, D. B., Woodford, L. C., Giddings, K. E., and Emert, G. H. (1981). Biotech. Bioengineer. Symp., No. 11., Wiley, New York, pp. 47–65.Google Scholar
  11. 11.
    Aiello, C., Ferrer, A., and Ledesma, A. (1996), Bioresource Technol. 57, 13–18.CrossRefGoogle Scholar
  12. 12.
    Sheir-Neiss, G. and Montenecourt, B. S. (1984), Appl. Microbiol. Biotechnol. 20, 46–53.CrossRefGoogle Scholar
  13. 13.
    Schell, D. J., Hinman, N. D., Wyman, C. E., and Werdene, P. J. (1990), Appl. Biochem. Biotechnol. 24/25, 287–296.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Tammy Kay Hayward
    • 1
  • Jenny Hamilton
    • 1
  • David Templeton
    • 1
  • Ed Jennings
    • 1
  • Mark Ruth
    • 1
  • Arun Tholudur
    • 1
  • James D. McMillan
    • 1
  • Mel Tucker
    • 1
  • Ali Mohagheghi
    • 1
  1. 1.National Renewable Energy LaboratoryGolden

Personalised recommendations