Applied Biochemistry and Biotechnology

, Volume 77, Issue 1–3, pp 267–275 | Cite as

A high-copy-number plasmid capable of replication in thermophilic cyanobacteria

  • Masato Miyake
  • Hiroshi Nagai
  • Makoto Shirai
  • Ryuichiro Kurane
  • Yasuo AsadaEmail author


A 2.5 kb high-copy-number plasmid, pM A4 in thermophilic cyanobacterium Synechococcus sp. M A4 was isolated and characterized to develop a genetic engineering system for thermophilic cyanobacteria. The copy number of pM A4 was determined to be by densitometry about 350/cell. The pM A4 may be a type of rolling-circle plasmid, because a possible rep gene encoding 34 k D-protein and a consensus sequence of a double-stranded origin nick site of rolling circle plasmids were found in the pM A4 sequence. The pM A4 was electro-introduced into another thermophile, Synechococcus sp. MA 19, which is the strongest poly-β-hydroxybutyrate (PHB) accumulator in photoau totrophic organisms. The pM A4 was incorporated and retained in MA 19. These results indicate that pM A4 could be developed as a useful vector for thermophilic cyanobacteria.

Index Entries

Thermophilic cyanobacteria poly-β-hydroxybutyrate carbon dioxide fixation biodegradable plastic genetic engineering rolling circle plasmid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borowitzka, M. A. and Borowitzka, L. J. (1988), Micro-algal Biotechnology, Cambridge University Press, New York.Google Scholar
  2. 2.
    Asada, Y. (1998), in Studies in Surface Science and Catalysis, vol. 114, Inui, T., Anpo, M., Izui, K., Yanagida, S., and Yamaguchi, T., eds., Elsevier, Amsterdam, pp. 321–326.Google Scholar
  3. 3.
    Tandeau de Marsac, N., de la Torre, F., and Szulmajster, J. (1987), J. Mol. Gen. Genet. 209, 396–398.CrossRefGoogle Scholar
  4. 4.
    Chungjatupornchai, W. (1990), Curr. Microbiol. 21, 283–288.CrossRefGoogle Scholar
  5. 5.
    Murphy, R. C. and Stevens Jr., S. E. (1992), Appl. Env. Microbiol. 58, 1650–1655.Google Scholar
  6. 6.
    Xudong, X., Rennqiu, K., and Yuxiang, H. (1993), FEMS Microbiol. Lett. 103, 247–250.Google Scholar
  7. 7.
    Kawata, Y., Yamano, N., Kojima, H., and Itoh, S. (1991), Biotechnol. Lett. 13, 851–856.CrossRefGoogle Scholar
  8. 8.
    Elanskaya, I. V. and Morzunova, I. B. (1989), Mol. Genet. Mikrobiol. Virusol. 9, 7–11.Google Scholar
  9. 9.
    Takeyama, H., Takeda, D., Yazawa, K., Yamada, A., and Matsunaga, T. (1997), Microbiology 143, 2725–2731.CrossRefGoogle Scholar
  10. 10.
    Sakai, M., Ogawa, T., Matsuoka, M., and Fukuda, H. (1997), J. Ferment. Bioeng. 84, 434–443.CrossRefGoogle Scholar
  11. 11.
    Suzuki, T., Miyake, M., Tokiwa, Y., Saegusa, H., Saito, T., and Asada, Y. (1996), Biotech. Lett. 18, 1047–1050.CrossRefGoogle Scholar
  12. 12.
    Hayashi, N. R., Peeraponpisal, Y., Nishihara, H., Ishii, M., Igarashi, Y., and Kodama, T. (1994), J. Ferment. Bioeng. 78, 179–181.CrossRefGoogle Scholar
  13. 13.
    Miyake, M., Erata, M., and Asada, Y. (1996), J. Ferment. Bioeng. 82, 516–518.Google Scholar
  14. 14.
    Brandl, H., Gross, R. A., Lenz, R. W., and Fuller, R. C. (1990), Adv. Biochem. Eng. Biotechnol. 41, 77–93.Google Scholar
  15. 15.
    Miyake, M. and Asada, Y. (1996), J. Marine Biotechnol. 4, 113–116.Google Scholar
  16. 16.
    Muhlenhoff, U. and Chauvat, F. (1996), J. Mol. Gen. Genet. 252, 93–100.CrossRefGoogle Scholar
  17. 17.
    Miyake, M., Kataoka, K., Shirai, M., and Asada, Y. (1997), J. Bacteriol. 179, 5009–5013.Google Scholar
  18. 18.
    Mac, Y. M. and Ho, K. K. (1991), Nucleic Acids Res. 20, 4101–4102.Google Scholar
  19. 19.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Springer Harbor, NY.Google Scholar
  20. 20.
    Allen, M. M. (1968), J. Physiol. 4, 1–4.Google Scholar
  21. 21.
    Yanisch-Perron, C., Vieira, J., and Messing, J. (1985), Gene 33, 103–119.CrossRefGoogle Scholar
  22. 22.
    Yamaguchi, Y. and Yamaguchi, M. (1984), Gene 29, 211–219.CrossRefGoogle Scholar
  23. 23.
    Lau, R. H. and Straus, N. A. (1985), FEMS Microbiol. Lett. 27, 253–256.CrossRefGoogle Scholar
  24. 24.
    Masepohl, B., Gorlitz, K., and Bohme, H. (1996), Biochim. Biophys. Acta 1307, 26–30.Google Scholar
  25. 25.
    Seery, L. T., Nolan, N. C., Sharp, P. M., and Devine, K. (1993), Plasmid 30, 185–196.CrossRefGoogle Scholar
  26. 26.
    Walton, D. K., Gendel, S. M., and Atherly, A. G. (1993), Nucleic Acids Res. 21, 746.CrossRefGoogle Scholar
  27. 27.
    Perkins, D. J. and Barnum, S. R. (1992), Plasmid 28, 170–176.CrossRefGoogle Scholar
  28. 28.
    Yang, X. and McFadden, B. (1993), J. Bacteriol. 175, 3981–3991.Google Scholar
  29. 29.
    Nedved, M. L., Gottlieb, P. A., and Moe, G. R. (1994), Nucleic Acids Res. 22, 5024–5030.CrossRefGoogle Scholar
  30. 30.
    Carlson, D. M. (1993), Crit. Rev. Oral Biol. Med. 4, 495–502.Google Scholar
  31. 31.
    Kauffman, D. L., Keller, P. J., Bennick, A., and Blum, M. (1993), Crit. Rev. Oral Biol. Med. 4, 287–292.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Masato Miyake
    • 1
  • Hiroshi Nagai
    • 2
  • Makoto Shirai
    • 2
  • Ryuichiro Kurane
    • 1
  • Yasuo Asada
    • 1
    Email author
  1. 1.National Institute of Bioscience and Human-Technology, Agency of Industrial Science and TechnologyMinistry of International Trade and IndustryTsukuba, IbarakiJapan
  2. 2.Division of BiotechnologyIbaraki UniversityIbarakiJapan

Personalised recommendations