Advertisement

Applied Biochemistry and Biotechnology

, Volume 77, Issue 1–3, pp 251–266 | Cite as

Improving the catabolic functions of desiccation-tolerant soil bacteria

  • F. WeekersEmail author
  • Ph. Jacques
  • D. Springael
  • M. Mergeay
  • L. Diels
  • Ph. Thonart
Article

Abstract

Bacterial strains were selected from a desiccated polluted soil for their drought tolerance and their ability to grow on diesel oil in view of incorporating them in a bioaugmentation product. These products are useful in case of recal citrant xenobiotic pollution, where there is no intrinsic biodegradation activity in the soil. These strains grow on the easily degradable components of diesel oil. In troduction of new catabolic genes into these desiccation-tolerant bacteria in order to improve their catabolic functions was considered.

Plasmid-borne catabolic genes coding for enzymes in volved in the degradation of more recalcitrant compounds (Isopropylbenzene, trichloroethene, 3-chloroben zoate, 4-chlorobiphenyl, biphenyl) were successfully introduced in some of the desiccation-tolerant strains by means of natural conjugation. Strains exhibiting good tolerance to desiccation and able to grow on the new carbon sources were obtained. The frequencies of integration of the plasmids ranged from 2×10−8 to 9.2 10−2 transconjugants/acceptor.

Drought-tolerance is indeed important for bioaugmentation because of its in trinsic ecological significance and because a bioaugmentation starter has to be conditioned in a desic cated form to ensure good shelf-life. The conservation of the properties during storage was evaluated by accelerated storage tests.

Index Entries

Bicaugmentation drought tolerance conjugation plasmids preservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glass, D., Risto, T., and Van, Eijk J. (1995), Gen. Engineer. News 15(19), 6–9.Google Scholar
  2. 2.
    Weekers, F., Jacques, Ph., Springael, D., Mergeay, M., Diels, L., and Thonart Ph. (1998), Appl. Biochem. Biotech. 70–72, 311–322.CrossRefGoogle Scholar
  3. 3.
    Venosa, A. D., Haines, J. R., Nisamaneepong, W., Govind, R., Prahan, R., and Siddique B. (1992), J. Ind. Microbiol. 10, 13–23.CrossRefGoogle Scholar
  4. 4.
    Weekers, F., Jacques, Ph., Springael, D., Mergeay, M., Diels, L., and Thonart, Ph. (1996), Med. Fac. Landbouww. Univ. Gent, 61/4b, 2161–2164.Google Scholar
  5. 5.
    Marconi, A., Kieboom, J., and de Bont, J. (1997), Biotechnol. Lett. 19, 603–606.CrossRefGoogle Scholar
  6. 6.
    Ramos, J., Duque, E., Huertas, M.-J., and Haidour, A. (1995), J. Bacteriol. 177(14), 3911–3916.Google Scholar
  7. 7.
    Straube, G., Hensel, C., Niedan, C., and Straube, E. (1990), Anthonie Van Leeuwenhoek J. Microbiol. 57, 29–32.CrossRefGoogle Scholar
  8. 8.
    Ferguson, J. and Korte, F. (1981), Appl. Environ. Microbiol. 24, 7–15.Google Scholar
  9. 9.
    Behki, R., Top, E., Dick, W., and Germon, P. (1993), Appl. Environ. Microbiol. 59, 1955–1959.Google Scholar
  10. 10.
    Kobayashi, M., Nagasawa, T., and Yamadla, H. (1992), Trends Biotechnol. 10, 402–408.CrossRefGoogle Scholar
  11. 11.
    Sallis, P., Armfield, S., Bull, A., and Hardman, T. (1990), J. Gen. Microbiol. 136, 115–120.Google Scholar
  12. 12.
    Zyltra, G. and Gibson, D. (1991), in Genetic Engineering, vol. 13., Setler, J. K., ed., Plenum Press, NY, pp. 183–203.Google Scholar
  13. 13.
    Weekers, F., Jacques, Ph., Springael, D., Mergeay, M., Diels, L., and Thonart, Ph. (1997), in Proceedings of the “Workshop on Extremophiles,” Dec., 7–9, 1997, Mol Belgium.Google Scholar
  14. 14.
    Mattimore, V. and Battista, J. R. (1996), J. Bacteriol. 178, 633–637.Google Scholar
  15. 15.
    Lang, E. and Malik, K. (1996), Biodegradation 7, 65–71.CrossRefGoogle Scholar
  16. 16.
    Sakane, T., Banno, I., and Iijima, T. (1983), IFO Res. Comm. 11, 14–24.Google Scholar
  17. 17.
    Simione, F. (1992), J. Parent. Sci. Technol. 46, 226–232.Google Scholar
  18. 18.
    De Valdez, G., and Diekman, H. (1993), Biology 30, 185–190.Google Scholar
  19. 19.
    Grieff, D. and Rightsel, W. (1965), J. Immunol. 98, 895–900.Google Scholar
  20. 20.
    Dabrock, B., Kesseler, M., Averhoff, B., and Gottschalk, G. (1994), Appl. Environ. Microbiol. 60(3), 853–860.Google Scholar
  21. 21.
    Springrel, D., Kreps, S., and Merglay, M. (1993), J. Bacteriol. 175, 1674–1681.Google Scholar
  22. 22.
    Figursky, D., Polhman, R., Bechhofer, D., Prince, A., and Kelton, C. (1982), Proc. Natl. Acad. Sci. USA 79, 1935–1939.CrossRefGoogle Scholar
  23. 23.
    Dawn, N. and Guuralus, C. (1973), J. Bacteriol. 114, 974–979.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • F. Weekers
    • 1
    Email author
  • Ph. Jacques
    • 2
  • D. Springael
    • 3
  • M. Mergeay
    • 3
  • L. Diels
    • 3
  • Ph. Thonart
    • 1
    • 2
  1. 1.Walloon Center for Industrial BiologyUniversity of LiegeLiegeBelgium
  2. 2.Faculty of Agricultural SciencesWalloon Center for Industrial BiologyGemblouxBelgium
  3. 3.Flemish Institute for Technological Research (VITO)MolBelgium

Personalised recommendations