Skip to main content
Log in

The effect of glucose on high-level xylose fermentations by recombinant Zymomonas in batch and fed-batch fermentations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylose-fermenting recombinant Zymomonas mobilis has been proposed as a candidate biocatalyst for the production of fuel ethanol from cellulosic biomass and wastes. This study documents the effect of glucose on xylose utilization by recombinant Z. mobilis CP4:pZB5 using a nutrient-rich synthetic (puresugar) hardwood dilute-acid prehydrolyzate medium containing 0.8% (w/v) glucose and 4% (w/v) xylose that was enriched with respect to xylose concentration within the range 6–10% (w/v) xylose. Supplementation with glucose toafinal concentration of 2% (w/v) resulted in faster xylose utilization of both 6% and 8% xylose; however, higher levels of glucose supplementation (>2%) did not result in a decrease in the time required for fermentation of either 6% or 8% xylose. An improvement in the rate of 8% xylose utilization was also achieved through, continuous glucose feeding in which the total glucose concentration was about 1.3% (w/v). This fedbatch experiment was designed to mimic the continuous supply of glucose provided by the cellulose saccharifying enzymes in a simultaneous saccharifying and cofermentation process. The upper limit ethanol concentration at which xylose utilization by recombinant Z. mobilis CP4:pZB5 is completely inhibited is about 5.5% (w/v) at pH 5 and >6% at pH 5.75. At pH 5.75, this level of ethanol was achieved with the following media of pure sugar mixtures (each containing the same sugar loading of 12% (w/v):

  1. 1.

    6% xylose+6% glucose;

  2. 2.

    8% xylose+4% glucose; and

  3. 3.

    4% xylose+8% glucose.

At the level of inoculum used in this study, complete fermentation of the 12% sugar mixtures required 2–3 d (equivalent to a volumetric ethanol productivity of 0.83–1.25 g ethanol/L.h). The sugar-to-ethanol conversion efficiency was 94–96% of theoretical maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.

    Article  CAS  Google Scholar 

  2. Picataggio, S. K., Zhang, M., Eddy, C. K., Deanda, K. A., and Finkelstein, M. (1996), U.S. Patent 5, 514, 583.

    Google Scholar 

  3. Picataggio, S. K., Zhang, M., and Finkelstein, M. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC, ACS Symposium Series, 566, pp. 342–362.

    Google Scholar 

  4. Zhang, M., Franden, M. A., Newman, M., McMillan, J., Finkelstein, M., and Picataggio, S. (1995), Appl. Biochem. Biotechnol. 51/52, 527–536.

    CAS  Google Scholar 

  5. Picataggio, S. K., Eddy, C., Deanda, K., Franden, M. A., Finkelstein, M., and Zhang, M. (1995), Seventeenth Symposium on Biotechnology for Fuels & Chemicals, Vail, CO, May (Paper No. 9).

  6. McMillan, J. D., Mohagheghi, A., Newman, M. M., and Picataggio, S. (1995), Annual Meeting of American Institut of Chemical Engineers, Miami, FL, Nov 12–17, Paper No 216c.

  7. McMillan, J. D. (1997), Renewable Engergy 10, 295–302.

    Article  CAS  Google Scholar 

  8. McMillan, J. D., Newman, M. M., Templeton, D. W., and Mohagheghi, A. (1999), Proceedings of 20th Symposium on Biotechnology, Paper No 140, Humana Press, Totowa, NJ.

    Google Scholar 

  9. Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63/65, 269–286.

    Google Scholar 

  10. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70/72, 353–368.

    Google Scholar 

  11. Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70/72, 161–172.

    Google Scholar 

  12. Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39/40, 667–685.

    Google Scholar 

  13. McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds. American Chemical Society, Washington, DC, ACS Symposium Series 566, pp. 411–437.

    Google Scholar 

  14. DiMarco, A. and Romano, A. H. (1985), Appl. Environ. Microbiol. 49, 151–157.

    CAS  Google Scholar 

  15. Goodman, A. E., Rogers, P. L., and Skotnicki, M. L. (1982), App. Environ. Microbiol. 44(2), 496–498.

    CAS  Google Scholar 

  16. Rogers, P. L., Joachimsthal, E. L., and Haggett, K. D. (1997), J. Australasian Biotechnol. 7, 304–309.

    CAS  Google Scholar 

  17. Rogers, P. L., Lee, K. J., Sktonicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.

    Google Scholar 

  18. Lawford, H. G. and Stevnsborg, N. (1986), Biotechnol. Bioeng. Symp. 17, 209–219.

    CAS  Google Scholar 

  19. Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. (1993), Crit. Rev. Biotechnol. 13, 57–98.

    CAS  Google Scholar 

  20. Beavan, M., Zawadzki, B., Droniuk, R., Fein, J. E., and Lawford, H. G. (1989), Appl. Biochem., Biotechnol. 20/21, 319–326.

    Google Scholar 

  21. Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39/40, 687–699.

    Google Scholar 

  22. Joachimsthal, E. L., Haggett, K. D., Jang, J.-H., and Rogers, P. L. (1998), Biotechnol. Lett. 20, 137–142.

    Article  CAS  Google Scholar 

  23. Joachimsthal, E. L., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77–79, 147–157.

    Article  Google Scholar 

  24. Rogers, P. L. and Tribe, D. E. (1983), U.S. Pat. 4,403,034.

  25. Rogers, P. L. and Tribe, D. E. (1984), U.S. Pat. 4,443,544.

  26. Dumsday, G. J., Jones, K., Stanley, G. A., and Pamment, N. B. (1997), J. Australasian Biotechnol. 7, 285–295.

    CAS  Google Scholar 

  27. Ohta, K., Beall, D. S., Meija, J. P., Shanmugam, K. T., and Ingram, L. O. (1991), Appl. Environ. Microbiol. 57, 893–900.

    CAS  Google Scholar 

  28. Lindsay, S. E., Bothast, R. J., and Ingram, L. O. (1995), Appl. Microbiol. Biotechnol. 43, 70–75.

    Article  CAS  Google Scholar 

  29. Ohta, K., Beall, D. S., Meija, J. P., Shanmugan, T., and Ingram, L. O. (1991), Appl. Env. Microbiol. 57, 2810–2815.

    CAS  Google Scholar 

  30. Toon, S. T., Philippidis, G. P., Ho, N. W. Y., Chen, Z-D., Brainard, A., Lumpkin, R. E., and Riley, C. J. (1997), Appl. Biochem. Biotechnol. 63/65, 243–255.

    Google Scholar 

  31. Wright, J. D. (1988), Chem. Eng. Progress 84, 62–74.

    CAS  Google Scholar 

  32. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21, 391–401.

    Article  Google Scholar 

  33. Krishnan, M. S., Ho, N. W. Y., and Tsao, G. T. (1999), Proceedings of 20th Symposium on Biotechnol. Paper, No 129, Humana Press, Totowa, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh G. Lawford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. The effect of glucose on high-level xylose fermentations by recombinant Zymomonas in batch and fed-batch fermentations. Appl Biochem Biotechnol 77, 235–249 (1999). https://doi.org/10.1385/ABAB:77:1-3:235

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:77:1-3:235

Index Entries

Navigation