Advertisement

Applied Biochemistry and Biotechnology

, Volume 77, Issue 1–3, pp 235–249 | Cite as

The effect of glucose on high-level xylose fermentations by recombinant Zymomonas in batch and fed-batch fermentations

  • Hugh G. LawfordEmail author
  • Joyce D. Rousseau
Article

Abstract

Xylose-fermenting recombinant Zymomonas mobilis has been proposed as a candidate biocatalyst for the production of fuel ethanol from cellulosic biomass and wastes. This study documents the effect of glucose on xylose utilization by recombinant Z. mobilis CP4:pZB5 using a nutrient-rich synthetic (puresugar) hardwood dilute-acid prehydrolyzate medium containing 0.8% (w/v) glucose and 4% (w/v) xylose that was enriched with respect to xylose concentration within the range 6–10% (w/v) xylose. Supplementation with glucose toafinal concentration of 2% (w/v) resulted in faster xylose utilization of both 6% and 8% xylose; however, higher levels of glucose supplementation (>2%) did not result in a decrease in the time required for fermentation of either 6% or 8% xylose. An improvement in the rate of 8% xylose utilization was also achieved through, continuous glucose feeding in which the total glucose concentration was about 1.3% (w/v). This fedbatch experiment was designed to mimic the continuous supply of glucose provided by the cellulose saccharifying enzymes in a simultaneous saccharifying and cofermentation process. The upper limit ethanol concentration at which xylose utilization by recombinant Z. mobilis CP4:pZB5 is completely inhibited is about 5.5% (w/v) at pH 5 and >6% at pH 5.75. At pH 5.75, this level of ethanol was achieved with the following media of pure sugar mixtures (each containing the same sugar loading of 12% (w/v):
  1. 1.

    6% xylose+6% glucose;

     
  2. 2.

    8% xylose+4% glucose; and

     
  3. 3.

    4% xylose+8% glucose.

     

At the level of inoculum used in this study, complete fermentation of the 12% sugar mixtures required 2–3 d (equivalent to a volumetric ethanol productivity of 0.83–1.25 g ethanol/L.h). The sugar-to-ethanol conversion efficiency was 94–96% of theoretical maximum.

Index Entries

Recombinant Zymomonas xylose ethanol tolerance cofermentation prehydrolyzate glucose feeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.CrossRefGoogle Scholar
  2. 2.
    Picataggio, S. K., Zhang, M., Eddy, C. K., Deanda, K. A., and Finkelstein, M. (1996), U.S. Patent 5, 514, 583.Google Scholar
  3. 3.
    Picataggio, S. K., Zhang, M., and Finkelstein, M. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC, ACS Symposium Series, 566, pp. 342–362.Google Scholar
  4. 4.
    Zhang, M., Franden, M. A., Newman, M., McMillan, J., Finkelstein, M., and Picataggio, S. (1995), Appl. Biochem. Biotechnol. 51/52, 527–536.Google Scholar
  5. 5.
    Picataggio, S. K., Eddy, C., Deanda, K., Franden, M. A., Finkelstein, M., and Zhang, M. (1995), Seventeenth Symposium on Biotechnology for Fuels & Chemicals, Vail, CO, May (Paper No. 9).Google Scholar
  6. 6.
    McMillan, J. D., Mohagheghi, A., Newman, M. M., and Picataggio, S. (1995), Annual Meeting of American Institut of Chemical Engineers, Miami, FL, Nov 12–17, Paper No 216c.Google Scholar
  7. 7.
    McMillan, J. D. (1997), Renewable Engergy 10, 295–302.CrossRefGoogle Scholar
  8. 8.
    McMillan, J. D., Newman, M. M., Templeton, D. W., and Mohagheghi, A. (1999), Proceedings of 20th Symposium on Biotechnology, Paper No 140, Humana Press, Totowa, NJ.Google Scholar
  9. 9.
    Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63/65, 269–286.Google Scholar
  10. 10.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70/72, 353–368.Google Scholar
  11. 11.
    Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70/72, 161–172.Google Scholar
  12. 12.
    Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39/40, 667–685.Google Scholar
  13. 13.
    McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds. American Chemical Society, Washington, DC, ACS Symposium Series 566, pp. 411–437.Google Scholar
  14. 14.
    DiMarco, A. and Romano, A. H. (1985), Appl. Environ. Microbiol. 49, 151–157.Google Scholar
  15. 15.
    Goodman, A. E., Rogers, P. L., and Skotnicki, M. L. (1982), App. Environ. Microbiol. 44(2), 496–498.Google Scholar
  16. 16.
    Rogers, P. L., Joachimsthal, E. L., and Haggett, K. D. (1997), J. Australasian Biotechnol. 7, 304–309.Google Scholar
  17. 17.
    Rogers, P. L., Lee, K. J., Sktonicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.Google Scholar
  18. 18.
    Lawford, H. G. and Stevnsborg, N. (1986), Biotechnol. Bioeng. Symp. 17, 209–219.Google Scholar
  19. 19.
    Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. (1993), Crit. Rev. Biotechnol. 13, 57–98.Google Scholar
  20. 20.
    Beavan, M., Zawadzki, B., Droniuk, R., Fein, J. E., and Lawford, H. G. (1989), Appl. Biochem., Biotechnol. 20/21, 319–326.Google Scholar
  21. 21.
    Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39/40, 687–699.Google Scholar
  22. 22.
    Joachimsthal, E. L., Haggett, K. D., Jang, J.-H., and Rogers, P. L. (1998), Biotechnol. Lett. 20, 137–142.CrossRefGoogle Scholar
  23. 23.
    Joachimsthal, E. L., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77–79, 147–157.CrossRefGoogle Scholar
  24. 24.
    Rogers, P. L. and Tribe, D. E. (1983), U.S. Pat. 4,403,034.Google Scholar
  25. 25.
    Rogers, P. L. and Tribe, D. E. (1984), U.S. Pat. 4,443,544.Google Scholar
  26. 26.
    Dumsday, G. J., Jones, K., Stanley, G. A., and Pamment, N. B. (1997), J. Australasian Biotechnol. 7, 285–295.Google Scholar
  27. 27.
    Ohta, K., Beall, D. S., Meija, J. P., Shanmugam, K. T., and Ingram, L. O. (1991), Appl. Environ. Microbiol. 57, 893–900.Google Scholar
  28. 28.
    Lindsay, S. E., Bothast, R. J., and Ingram, L. O. (1995), Appl. Microbiol. Biotechnol. 43, 70–75.CrossRefGoogle Scholar
  29. 29.
    Ohta, K., Beall, D. S., Meija, J. P., Shanmugan, T., and Ingram, L. O. (1991), Appl. Env. Microbiol. 57, 2810–2815.Google Scholar
  30. 30.
    Toon, S. T., Philippidis, G. P., Ho, N. W. Y., Chen, Z-D., Brainard, A., Lumpkin, R. E., and Riley, C. J. (1997), Appl. Biochem. Biotechnol. 63/65, 243–255.Google Scholar
  31. 31.
    Wright, J. D. (1988), Chem. Eng. Progress 84, 62–74.Google Scholar
  32. 32.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21, 391–401.CrossRefGoogle Scholar
  33. 33.
    Krishnan, M. S., Ho, N. W. Y., and Tsao, G. T. (1999), Proceedings of 20th Symposium on Biotechnol. Paper, No 129, Humana Press, Totowa, NJ.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Bioengineering Laboratory, Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations