Advertisement

Applied Biochemistry and Biotechnology

, Volume 77, Issue 1–3, pp 211–222 | Cite as

2-Deoxyglucose as a selective agent for derepressed mutants of Pichia stipitis

  • Hassan K. Sreenath
  • Thomas W. JeffriesEmail author
Article

Abstract

The glucose analog 2-deoxyglucose (2-DOG) has been used to obtain mutants depressed for pentose metabolism. Some researchers have used 2-DOG alone whereas others have used it in the presence of a glucose-repressible carbon source. We examined both methods and screened mutant strains for improved use of xylose in the presence of glucose. Pichia stipitis mutants selected for growth on d-xylose in the presence of 2-DOG used xylose from a 1∶1 glucose:xylose mixture more rapidly than did their parents. One of these mutants, FPL-DX26, completely consumed xylose in the presence of glucose and produced 33g/L ethanol in 45h from 80 g/L of this sugar mixture. Mutants selected for growth on 2-DOG alone did not show significant improvement. Selection for growth on d-xylose in the presence of 2-DOG has been useful in developing parental strains for further genetic manipulation.

Index Entries

Pichia stipitis mutation selection 2-deoxyglucose (2-DOG) fermentation ethanol glucose repression 

Terms for Kinetic Factors

μ

Specific growth rate (/h)

Rs

volumetric sugar uptake rate (g/L/h)

Qs

specific sugar uptake rate (g/g/h)

Rpe

volumetric ethanol production rate (g/L/h)

Qpe

specific ethanol production rate (g/g/h)

Ye

ethanol yield (g/g)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Patel, G. B. (1984), Appl. Microbiol. Biotechnol. 20, 111–117.CrossRefGoogle Scholar
  2. 2.
    Delgenes, J. P., Moletta, R., and Navarro, J. M. (1988), Appl. Microbiol. Biotechnol. 29, 155–161.Google Scholar
  3. 3.
    Dellweg, H., Klein, C., Prahl, S., Rizzi, M., and Weigert, B. (1990), Food Biotechnol. 4, 137–148.CrossRefGoogle Scholar
  4. 4.
    Jeffries, T. W. and Kurtzman, C. P. (1994), Enzyme Microb. Technol. 16, 922–932.CrossRefGoogle Scholar
  5. 5.
    Takahashi, D. F., Carvalhal, M. L., and Alterthum, F. (1994), Biotechnol. Lett. 16, 747–750.CrossRefGoogle Scholar
  6. 6.
    Alexander, N. J. (1990), Curr. Genet. 17, 493–497.CrossRefGoogle Scholar
  7. 7.
    Jeffries, T. W. (1984), Enzyme Microb. Technol 6, 254–258.CrossRefGoogle Scholar
  8. 8.
    Lachke, A. H. and Jeffries, T. W. (1986), Enzyme Microb. Technol. 8, 353–359.CrossRefGoogle Scholar
  9. 9.
    Laplace, J. M., Delgenes, J. P., Molleta, R., and Navarro, J.M. (1992), Enzyme Microb. Technol. 14, 644–648.CrossRefGoogle Scholar
  10. 10.
    McCracken, L. D. and Gong, C. S. (1983), Adv. Biochem. Bioeng. 27, 33–85.Google Scholar
  11. 11.
    Parekh, S. R., Yu, S., and Waymann, M. (1986), Appl. Microbiol. Biotechnol. 25, 300–304.CrossRefGoogle Scholar
  12. 12.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995), Science 267, 240–243.CrossRefGoogle Scholar
  13. 13.
    D'Amore, T. and Dowhanick, T. M. (1994), J. Am. Soc. Brew. Chem. 52, 12–15.Google Scholar
  14. 14.
    Entian, K. D., and Frohlich, K.-U. (1984), J. Bacteriol. 158, 29–35.Google Scholar
  15. 15.
    Lobo, Z. and Maitra, P. K. (1979), Mol. Gen. Genet. 157, 297–300.CrossRefGoogle Scholar
  16. 16.
    Jones, R. M., Russell, I., and Stuart, G. G. (1986), J. Am. Soc. Brew. Chem. 44, 161–166.Google Scholar
  17. 17.
    Goffrini, P., Ficarelli, A., and Ferrero, I. (1995), Microbiology 141, 441–447.CrossRefGoogle Scholar
  18. 18.
    Pardo, E. H., Sunayama, S., Pedrosa, F. O., and Rigo, L. U. (1992), Can. J. Microbiol. 38, 417–422.CrossRefGoogle Scholar
  19. 19.
    Sreenath, H. K. and Jeffries, T. W. (1996), Biotechnol. Tech. 10, 239–242.CrossRefGoogle Scholar
  20. 20.
    Jeffries, T. W. and Livingston, P. L. (1992) U. S. Patent No. 5, 126, 266.Google Scholar
  21. 21.
    Sreenath, H. K. and Jeffries, T. W. (1997), Appl. Biochem. Biotechnol. 63/65, 109–116.CrossRefGoogle Scholar
  22. 22.
    Lu, P., Davis, B. P., Hendrick, J., and Jeffries, T. W. (1998), Appl. Microbiol. Biotechnol. 49, 141–146.CrossRefGoogle Scholar
  23. 23.
    Jeffries, T. W. (1982), Biotechnol. Bioeng. Symp. 12, 103–110.Google Scholar
  24. 24.
    Verhaar, L. A. Th. and Kuster, B. F. M. (1981), J. Chromatog. 210, 279–290.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Forest Products LaboratoryInstitute of Microbial Biochemical TechnologyMadison
  2. 2.Department of BacteriologyUniversity of Wisconsin-MadisonMadison

Personalised recommendations