Skip to main content
Log in

2-Deoxyglucose as a selective agent for derepressed mutants of Pichia stipitis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The glucose analog 2-deoxyglucose (2-DOG) has been used to obtain mutants depressed for pentose metabolism. Some researchers have used 2-DOG alone whereas others have used it in the presence of a glucose-repressible carbon source. We examined both methods and screened mutant strains for improved use of xylose in the presence of glucose. Pichia stipitis mutants selected for growth on d-xylose in the presence of 2-DOG used xylose from a 1∶1 glucose:xylose mixture more rapidly than did their parents. One of these mutants, FPL-DX26, completely consumed xylose in the presence of glucose and produced 33g/L ethanol in 45h from 80 g/L of this sugar mixture. Mutants selected for growth on 2-DOG alone did not show significant improvement. Selection for growth on d-xylose in the presence of 2-DOG has been useful in developing parental strains for further genetic manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

μ:

Specific growth rate (/h)

Rs:

volumetric sugar uptake rate (g/L/h)

Qs:

specific sugar uptake rate (g/g/h)

Rpe:

volumetric ethanol production rate (g/L/h)

Qpe:

specific ethanol production rate (g/g/h)

Ye:

ethanol yield (g/g)

References

  1. Patel, G. B. (1984), Appl. Microbiol. Biotechnol. 20, 111–117.

    Article  CAS  Google Scholar 

  2. Delgenes, J. P., Moletta, R., and Navarro, J. M. (1988), Appl. Microbiol. Biotechnol. 29, 155–161.

    CAS  Google Scholar 

  3. Dellweg, H., Klein, C., Prahl, S., Rizzi, M., and Weigert, B. (1990), Food Biotechnol. 4, 137–148.

    Article  CAS  Google Scholar 

  4. Jeffries, T. W. and Kurtzman, C. P. (1994), Enzyme Microb. Technol. 16, 922–932.

    Article  CAS  Google Scholar 

  5. Takahashi, D. F., Carvalhal, M. L., and Alterthum, F. (1994), Biotechnol. Lett. 16, 747–750.

    Article  CAS  Google Scholar 

  6. Alexander, N. J. (1990), Curr. Genet. 17, 493–497.

    Article  CAS  Google Scholar 

  7. Jeffries, T. W. (1984), Enzyme Microb. Technol 6, 254–258.

    Article  CAS  Google Scholar 

  8. Lachke, A. H. and Jeffries, T. W. (1986), Enzyme Microb. Technol. 8, 353–359.

    Article  CAS  Google Scholar 

  9. Laplace, J. M., Delgenes, J. P., Molleta, R., and Navarro, J.M. (1992), Enzyme Microb. Technol. 14, 644–648.

    Article  CAS  Google Scholar 

  10. McCracken, L. D. and Gong, C. S. (1983), Adv. Biochem. Bioeng. 27, 33–85.

    CAS  Google Scholar 

  11. Parekh, S. R., Yu, S., and Waymann, M. (1986), Appl. Microbiol. Biotechnol. 25, 300–304.

    Article  CAS  Google Scholar 

  12. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995), Science 267, 240–243.

    Article  CAS  Google Scholar 

  13. D'Amore, T. and Dowhanick, T. M. (1994), J. Am. Soc. Brew. Chem. 52, 12–15.

    Google Scholar 

  14. Entian, K. D., and Frohlich, K.-U. (1984), J. Bacteriol. 158, 29–35.

    CAS  Google Scholar 

  15. Lobo, Z. and Maitra, P. K. (1979), Mol. Gen. Genet. 157, 297–300.

    Article  Google Scholar 

  16. Jones, R. M., Russell, I., and Stuart, G. G. (1986), J. Am. Soc. Brew. Chem. 44, 161–166.

    CAS  Google Scholar 

  17. Goffrini, P., Ficarelli, A., and Ferrero, I. (1995), Microbiology 141, 441–447.

    Article  CAS  Google Scholar 

  18. Pardo, E. H., Sunayama, S., Pedrosa, F. O., and Rigo, L. U. (1992), Can. J. Microbiol. 38, 417–422.

    Article  CAS  Google Scholar 

  19. Sreenath, H. K. and Jeffries, T. W. (1996), Biotechnol. Tech. 10, 239–242.

    Article  CAS  Google Scholar 

  20. Jeffries, T. W. and Livingston, P. L. (1992) U. S. Patent No. 5, 126, 266.

  21. Sreenath, H. K. and Jeffries, T. W. (1997), Appl. Biochem. Biotechnol. 63/65, 109–116.

    Article  Google Scholar 

  22. Lu, P., Davis, B. P., Hendrick, J., and Jeffries, T. W. (1998), Appl. Microbiol. Biotechnol. 49, 141–146.

    Article  CAS  Google Scholar 

  23. Jeffries, T. W. (1982), Biotechnol. Bioeng. Symp. 12, 103–110.

    CAS  Google Scholar 

  24. Verhaar, L. A. Th. and Kuster, B. F. M. (1981), J. Chromatog. 210, 279–290.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Jeffries.

Additional information

The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin-Madison. This article was prepared by U.S. Goverment employees on official time, and it is therefore in the public domain and not subject to copyright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreenath, H.K., Jeffries, T.W. 2-Deoxyglucose as a selective agent for derepressed mutants of Pichia stipitis . Appl Biochem Biotechnol 77, 211–222 (1999). https://doi.org/10.1385/ABAB:77:1-3:211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:77:1-3:211

Index Entries

Navigation