Applied Biochemistry and Biotechnology

, Volume 77, Issue 1–3, pp 191–204 | Cite as

Fermentation performance characteristics of a prehydrolyzate-adapted xylose-fermenting recombinant Zymomonas in batch and continuous fermentations

  • Hugh G. LawfordEmail author
  • Joyce D. Rousseau
  • Ali Mohagheghi
  • James D. McMillan


Long-term (149 d) continuous fermentation was used to adapt a xylose-fermenting recombinant Zymomonas mobilis, strain 39676:pZB 4L, to conditioned (overlimed) dilute-acid yellow poplar hemicellulose hydrolyzate (“prehydrolyzate”). An “adapted” variant was isolated from a chemostat operating at a dilution rate of 0.03/h with a 50% (v/v) prehydrolyzate, corn steep liquor, and sugar-supplemented medium, at pH 5.75. The level of xylose and glucose in the medium was kept constant at 4% (w/v) and 0.8% (w/v), respectively. These sugar concentrations reflect the composition of the undiluted hardwood prehydrolyzate. The level of conditioned hardwood prehydrolyzate added to the medium was increased in 5% increments startingata level of 10%. At the upper level of 50% prehydrolyzate, the acetic-acid concentration was about 0.75% (w/v). The adapted variant exhibited improved xylose-fermentation performance in a pure-sugar, synthetic hardwood prehydrolyzate medium containing 4% xylose (w/v), 0.8% (w/v) glucose, and acetic acid in the range 0.4–1.0% (w/v). The ethanol yield was 0.48–0.50 g/g; equivalent to a sugar-to-ethanol conversion efficiency of 94–96% of theoretical maximum. The maximum growth yield and maintenance energy coefficients were 0.033 g dry cell mass (DCM)/g sugars and 0.41 g sugars/g DCM/h, respectively. The results confirm that long-term continuous adaptation is a useful technique for effecting strain improvement with respect to the fermentation of recalcitrant feedstocks.

Index Entries

Recombinant Zymomonas continuous cofermentation xylose hardwood prehydrolyzate ethanol yield adaptation acetic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21, 391–401.Google Scholar
  2. 2.
    Lawford, H. G. and Rousseau, J. D. (1993), in, Energy from Biomass and Wastes XVI (March 1992), Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 559–597.Google Scholar
  3. 3.
    Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992), Appl. Biochem. Biotechnol. 34/35, 639–650.Google Scholar
  4. 4.
    Lynd, L. R., Elander, R. T., and Wyman, C. E. (1996), Appl. Biochem. Biotechnol. 57/58, 741–761.Google Scholar
  5. 5.
    Lynd, L. R. (1996), Ann. Rev. Energy Environ. 21, 403–465.CrossRefGoogle Scholar
  6. 6.
    Wright, J. D., Wyman, C. E., and Grohmann, K. (1988), Appl. Biochem. Biotechnol. 18, 75–90.Google Scholar
  7. 7.
    Vallander, L. and Erikson, K.-E. L. (1990), Adv. Biochem. Eng. 42, 63–95.Google Scholar
  8. 8.
    Godia, F., Sasas, C., and Sola, C. (1987), Process Biochem. 22, 43–50.Google Scholar
  9. 9.
    Picataggio, S. K., Zhang, M., Eddy, C. K., Deanda, K. A., and Finkelstein, M. (1996), US Patent 5, 514,583.Google Scholar
  10. 10.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.CrossRefGoogle Scholar
  11. 11.
    Zhang, M., Franden, M. A., Newman, M., McMillan, J., Finkelstein, M., and Picataggio, S. K. (1995), Appl. Biochem. Biotechnol. 51/52, 527–536.Google Scholar
  12. 12.
    Picataggio, S. K., Eddy, C., Deanda, K., Franden, M. A., Finkelstein, M., and Zhang, M. (1995), Seventeenth Symposium on Biotechnology for Fuels & Chemicals, Paper No. 9, Humana Press, Totowa, NJ.Google Scholar
  13. 13.
    McMillan, J. D., Mohagheghi, A., Newman, M. M., and Picataggio, S. (1995), Annual Meeting of American Institute of Chemical Engineers, Miami, FL, Nov 12–17, Paper No. 216c.Google Scholar
  14. 14.
    McMillan, J. D. (1997), Renewable Energy 10, 295–302.CrossRefGoogle Scholar
  15. 15.
    Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63/65, 269–286.CrossRefGoogle Scholar
  16. 16.
    Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70/72, 161–172.Google Scholar
  17. 17.
    Lawford, H. G. and Rousseau, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 235–249.CrossRefGoogle Scholar
  18. 18.
    Grethlein, H. E. (1985), Bio/Technology 3, 155–160.CrossRefGoogle Scholar
  19. 19.
    Grethlein, H. E., Allen, D. C., and Converse, A. O. (1984), Biotech. Bioeng. 26, 1498–1505.CrossRefGoogle Scholar
  20. 20.
    Torget, R., Werdene, P., Himmel, M., and Grohmann, K. (1990), Appl. Biochem. Biotechnol. 24/25, 115–126.Google Scholar
  21. 21.
    Timell, T. E. (1964), Adv. Carbohydrate Chem. 19, 247–302.Google Scholar
  22. 22.
    McMillan, J. D. (1994), in, Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC, ACS Symposium Series 566, pp. 411–437.Google Scholar
  23. 23.
    Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39/40, 687–699.Google Scholar
  24. 24.
    Lawford, H. G. and Rousseau, J. D. (1994), Appl. Biochem. Biotechnol. 45/46, 437–448.CrossRefGoogle Scholar
  25. 25.
    Joachimsthal, E. L., Haggett, K. D., Jang, J.-H., and Rogers, P. L. (1998), Biotechnol. Lett. 20, 137–142.CrossRefGoogle Scholar
  26. 26.
    McMillan, J. D., Newman, M. M., Templeton, D. W., and Mohagheghi, A. (1999), Proceedings of 20th Symposium on Biotechnology, Paper No. 140, Humana Press, Totowa, NJ, in press.Google Scholar
  27. 27.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70/72, 353–368.Google Scholar
  28. 28.
    Nguyen, Q. A., Dickow, J. H., Duff, B. W., Farmer, J. D., Glassner, D. A., Ibsen, K. N., Ruth, M. F., Schell, D. J., Thompson, I. B., and Tucker, M. P. (1996), Bioresource Technol. 58, 189–196.CrossRefGoogle Scholar
  29. 29.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Appl. Biochem. Biotechnol. 67, 185–198.Google Scholar
  30. 30.
    Rogers, P. L., Joachimsthal, E. L., and Haggett, K. D. (1997), J. Australasian Biotechnol. 7, 304–309.Google Scholar
  31. 31.
    Pirt, S. J. (1975), in, Principles of Microbe and Cell Cultivation, Blackwell, London, UK, pp. 66–68.Google Scholar
  32. 32.
    Beveler, W., Rogers, P. L., and Fiechter, A. (1984), Appl. Microbiol. Biotechnol. 19, 277–280.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Hugh G. Lawford
    • 1
    Email author
  • Joyce D. Rousseau
    • 1
  • Ali Mohagheghi
    • 2
  • James D. McMillan
    • 2
  1. 1.Bioengineering Laboratory, Department of BiochemistryUniversity of TorontoTorontoCanada
  2. 2.Biotechnology Center for Fuels and ChemicalsNational Renewable Energy LaboratoryGolden

Personalised recommendations