Advertisement

Applied Biochemistry and Biotechnology

, Volume 77, Issue 1–3, pp 181–189 | Cite as

Invertase production is related to the nitrogen source in Hansenula anomala

  • Maria Bernadete de Medeiros
  • Patricia Maria Barroso de Carvalho
Article

Abstract

Differences in invertase accumulation of Hansenula anomala cultivated in ammonium and nitrate are reported. Media supplemented with sucrose and ammonium sulfateas the solecarbon and nitrogen source, respectively, show strong media acidification (pH 3.0 or lower), and vigorous cell growth. Invertase activity was not detected under such conditions. A cell-free imitation experiment suggests that, under such low pH, extensive chemical break-down of sucrose (>22%) occurs. Thus, H. anomala is able togrow under strong acidic conditions that permit sucrose metabolism by the uptake of monosaccharides generated from chemical hydrolysis. In addition, invertase activity is not present in cells grown in nitrate as nitrogen source at pH 5.0, but at pH 7.0 activity is detected. If ammonium is supplied instead of nitrate, cells grown at pH 5.0 show invertase activity and at pH 7.0 high levels of activity are detected. These results indicate a specific physiological response of the sucrose metabolism to the presence of alternate nitrogen source.

Index Entries

Hansenula anomala invertase nitrogen source sucrose metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De la Fuente, G. and Sols, A. (1962), Biochim. Biophys. Acta. 56, 49–62.CrossRefGoogle Scholar
  2. 2.
    Zárate, V. and Belda, F. (1996), J. Appl. Bacteriol. 80, 45–52.Google Scholar
  3. 3.
    Chávez, F. P., Rodriguea, L., Díaz, J., Delgado, J. M., and Cremata, J. A. (1997), Biotechnol. 53, 67–74.CrossRefGoogle Scholar
  4. 4.
    Gancedo, J. M. and Gancedo, C. (1986), FEMS Microbiol. Lett. 32, 179–187.Google Scholar
  5. 5.
    Entian, K. D. (1986), Microbiol. Sci. 3, 366–371.Google Scholar
  6. 6.
    Kreger-van Rij, N. J. W. (1984), The Yeast, 3rd ed., Elsevier, Amsterdam.Google Scholar
  7. 7.
    Barnett, J. A., Payne, R. W., and Yarrow, D. (1983), Yeast: Characteristics and Identification, Cambridge University Press, Cambridge.Google Scholar
  8. 8.
    Silver, W. S. (1957), J. Bacteriol. 73, 241–246.Google Scholar
  9. 9.
    Pichinoty, F. and Metenier, G. (1967), Ann. l'Institut Pasteur (Paris). 112, 701–712.Google Scholar
  10. 10.
    Minagawa, N. and Yoshimoto, A. (1983), Agric. Biol. Chem. 48, 1907–1909.Google Scholar
  11. 11.
    Chouldary, V. P. and Ramanda, R. G. (1976), Biochem. Biophys. Res. Comm. 72, 598–602.CrossRefGoogle Scholar
  12. 12.
    Wickerham, L. J. (1986), J. Bacteriol. 52, 293–301.Google Scholar
  13. 13.
    Borzani, W. (1986), Rev. Brasil Eng. 3, 35–61.Google Scholar
  14. 14.
    Meyer, J. and Matile, P. (1975), Arch. Microbiol. 103, 51–55.CrossRefGoogle Scholar
  15. 15.
    Viola, A. M., Bortesi, T., Pizzigoni, R., Puglisi, P. P., Goffrini, P., and Ferrero, I. (1986), Antonie van Leeuvenhoek. 52, 295–308.CrossRefGoogle Scholar
  16. 16.
    Bradford, M. M. (1976), Ann. Biochem. 72, 248–254.CrossRefGoogle Scholar
  17. 17.
    Nierderel, J. B. (1942), Micromethods of Quantitative Organic Analyses, Wiley, London.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Maria Bernadete de Medeiros
    • 1
  • Patricia Maria Barroso de Carvalho
    • 1
  1. 1.Department of BiotechnologyFaculdade De Engenharia Quimica De LorenaLorenaBrazil

Personalised recommendations